Understanding Singular Value Decomposition

Lin ZHANG, PhD
School of Software Engineering
Tongji University
July, 2020

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

Some Prerequisite Results

Result 1: Suppose that $\operatorname{rank}\left(A_{m \times n}\right)=r$, then $r\left(A^{T} A\right)=r\left(A A^{T}\right)=r$

Proof: Let's prove if $r\left(A_{m \times n}\right)=r$, then $r\left(A^{T} A\right)=r(A)=r$

Following a similar way, we can prove $r\left(A A^{T}\right)=r(A)=r$

Some Prerequisite Results

Result 2: If A is an $n \times n$ real symmetric matrix and $r(A)=r$, then A has and only has r non-zero eigen-values

Proof: Since A is an $n \times n$ real symmetric matrix, A can be diagonally decomposed as

Since multiplied by an invertible matrix, a matrix's rank remains
$r\left(\left[\begin{array}{llll}\lambda_{1} & & \\ & \lambda_{2} & & \\ & \ddots & \\ & & \lambda_{n}\end{array}\right]\right)=r(A)=r \Rightarrow\left[\begin{array}{cccc}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$ has r non-zeros diagonal entries

Some Prerequisite Results

Result 3: Suppose A is an $m \times n$ matrix, then
$\left(A^{T} A\right)_{n \times n}$ and $\left(A A^{T}\right)_{m \times m}$ are both positive semi-definite matrices
Proof:

$$
\begin{aligned}
& \forall \mathbf{x} \neq \mathbf{0}, 0 \leq(A \mathbf{x})^{T}(A \mathbf{x})=\mathbf{x}^{T} A^{T} A \mathbf{x} \\
& \left(A^{T} A\right)_{n \times n} \text { is positive semi-definite }
\end{aligned}
$$

Following a similar way, we can prove $\left(A A^{T}\right)_{m \times m}$ is also positive semi-definite

Some Prerequisite Results

Result 4: Suppose A is an $m \times n$ matrix, then
$\left(A^{T} A\right)_{n \times n}$ and $\left(A A^{T}\right)_{m \times m}$ have the same nonzero eigen-values
Proof:
Suppose that λ is the eigen-value of $\left(A^{T} A\right)_{n \times n}$ and \mathbf{x} is the associated eigenvector, then

$$
A^{T} A \mathbf{x}=\lambda \mathbf{x}
$$

Multiply A on both sides,

$$
A A^{T}(A \mathbf{x})=\lambda(A \mathbf{x})
$$

It can be seen that, λ and $A \mathbf{x}$ are eigen-value and the associated eigen-vector of $A A^{T}$

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

Singular Value Decomposition's General Form

SVD decomposition theorem: Any matrix $A_{m \times n}$ can be decomposed as the following form,

$$
A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}
$$

where U and V are two orthogonal matrices, $r(A)=r$,

$$
\sum_{m \times n}=\left[\begin{array}{ll}
\Sigma_{r} & \boldsymbol{O}_{r \times(n-r)} \\
\boldsymbol{O}_{(m-r) \times r} & \boldsymbol{O}_{(m-r) \times(n-r)}
\end{array}\right]_{m \times n}=\left[\begin{array}{lll}
{\left[\begin{array}{ccc}
\sigma_{1} & & \\
& & \\
\sigma_{2} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]} & \\
& \boldsymbol{O}_{(m \times(n-r)} & \\
& & \boldsymbol{O}_{(m-r) \times(n-r)}
\end{array}\right]
$$

$\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}>0$ are called the singular values of A
In general case, $\sum_{m \times n}$ is not unique. However, if $\left\{\sigma_{i}\right\}_{i=1}^{r}$ are arranged in order, $\Sigma_{m \times n}$ is uniquely determined by A. In the following, we require that $\sigma_{1} \geq \sigma_{2} \geq, \ldots, \geq \sigma_{r}>0$

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

Relationship between SVD and EVD

Result 5: Suppose that $\operatorname{rank}\left(A_{m \times n}\right)=r$, then $\left(A^{T} A\right)_{n \times n}$ has and only has r positive eigen-values and all its other eigen-values are zeros

Proof:
$r\left(A_{m \times n}\right)=r \xrightarrow{\text { result } 1} r\left(A^{T} A\right)=r$
$A^{T} A$ is a real symmetric matrix \quad result 2 $A^{T} A$ has and only has r non-zero eigen-values

Using result $3, A^{T} A$ is positive semi-definite \square eigen-values of $A^{T} A$ are all non-negative
$A^{T} A$ has and only has r positive eigen-values and all its other eigen-values are zeros

Relationship between SVD and EVD

If $A \in \mathbb{R}^{m \times n}, r\left(A_{m \times n}\right)=r$, using result 5, $A^{T} A$ can be orthogonally diagonalized as, (Note: $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0$ and V^{\prime} is an orthogonal matrix)

On the other hand, based on SVD, we know that $A=U \Sigma V^{T}$, then

$$
\begin{aligned}
& \left(A^{T} A\right)_{n \times n}=\left(U \Sigma_{m \times n} V^{T}\right)^{T}\left(U \Sigma_{m \times n} V^{T}\right) \\
& =V \Sigma^{T} U^{T} U \Sigma V^{T}=V\left(\Sigma^{T} \Sigma\right)_{n \times n} V^{T}
\end{aligned}
$$

$$
=V\left[\begin{array}{llll}
{\left[\begin{array}{llll}
\sigma_{1}^{2} & & & \\
& \sigma_{2}^{2} & & \\
& & \ddots & \\
& & \sigma_{r}^{2}
\end{array}\right]} & \\
& \boldsymbol{O}_{r \times(n-r)} \\
\boldsymbol{O}_{(n-r) \times r} & & \boldsymbol{O}_{(n-r) \times(n-r)}
\end{array}\right] \quad V_{n \times n}
$$

$$
\sigma_{i}=\sqrt{\lambda_{i}}, 1 \leq i \leq r
$$

Relationship between SVD and EVD

- We can have the following conclusions about the SVD of A and the EVD of $A^{T} A$
- A has r singular values $\left\{\sigma_{i}\right\}_{i=1}^{r}$ (positive) and $A^{T} A$ has r positive eigen-values $\left\{\lambda_{i}\right\}_{i=1}^{r}$ (all its other eigen-values are zeros), and $\sigma_{i}=\sqrt{\lambda_{i}}$
- A 's right singular matrix V is actually the orthogonal matrix V^{\prime} obtained when performing orthogonally diagonalization to $A^{T} A$; but it needs to be noted that $V\left(V^{\prime}\right)$ is not unique
- Using similar derivations, we can have the following conclusions about the SVD of A and the EVD of $A A^{T}$
$-A A^{T}$ has the same r positive eigen-values $\left\{\lambda_{i}\right\}_{i=1}^{r}$ (result 4), and $\sigma_{i}=\sqrt{\lambda_{i}}$
- A 's left singular matrix U is actually the orthogonal matrix obtained when performing orthogonally diagonalization to $A A^{T}$; but it needs to be noted that both of them are not unique

Relationship between SVD and EVD

- Consider the following special cases
- If A is an $n \times n$ matrix, how about its eigen-values and singular values?
- If A is an $n \times n$ real symmetric matrix, how about its eigen-values and singular values?
- If A is an $n \times n$ real symmetric and positive semi-definite matrix, how about its eigen-values and singular values?

Relationship between SVD and EVD

Result 6: Suppose that $A_{n \times n}$ is a positive semi-definite (real symmetric) matrix. Then, its eigen-values and singular values are the same.

Proof:
Suppose that $\operatorname{rank}(A)=r \square$ result 5
$A_{n \times n}$ is positive semi-definite $\longrightarrow A$ has and only has r positive eigen-values $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{r}>0$ (and real symmetric) and all its other eigen-values are zeros

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

Economy-sized form of SVD

- For a matrix $A \in \mathbb{R}^{m \times n}$, if $r(A)$ is much smaller then m and n, it will be more memory efficient to store the economy-sized SVD

$$
\begin{aligned}
& =\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]\left[\begin{array}{cccc}
\sigma_{1} & & & \\
& \sigma_{2} & & \\
& & \ddots & \\
& & & \sigma_{r}
\end{array}\right]\left[\begin{array}{l}
\mathbf{v}_{1}^{r} \\
\vdots \\
\mathbf{v}_{r}^{T}
\end{array}\right]=U_{m x x} \Sigma_{r \times x} V_{n \times r}^{T}
\end{aligned}
$$

Outer product form of SVD

Result 7: Outer product form of a matrix product.

In general, if X is an $m \times k$ matrix and Y is a $k \times n$ matrix, the matrix product can be expressed as,

$$
X Y=\sum_{i=1}^{k}\left[\operatorname{col}(X)_{i}\right]_{m \times 1}\left[\operatorname{row}(Y)_{i}\right]_{1 \times n}
$$

Note: each submatrix $\left[\operatorname{col}(X)_{i}\right]\left[\operatorname{row}(Y)_{i}\right]$ is of rank 1

Outer product form of SVD

Let's consider the economy-sized SVD of $A, A_{m \times n}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]$
$\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & & \\ & & \ddots & \\ & & & \sigma_{r}\end{array}\right]\left[\begin{array}{l}\mathbf{v}_{1}^{T} \\ \vdots \\ \mathbf{v}_{r}^{T}\end{array}\right]$

Let $X=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}\right]\left[\begin{array}{llll}\sigma_{1} & & & \\ & \sigma_{2} & \\ & & \ddots & \\ & & & \sigma_{r}\end{array}\right]=\left(\sigma_{1} \mathbf{u}_{1}, \sigma_{2} \mathbf{u}_{2}, \ldots, \sigma_{r} \mathbf{u}_{r}\right), Y=\left[\begin{array}{l}\mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \\ \\ \\ \mathbf{v}_{r}^{T}\end{array}\right]$
$A=X Y=\left(\sigma_{1} \mathbf{u}_{1}, \sigma_{2} \mathbf{u}_{2}, \ldots, \sigma_{r} \mathbf{u}_{r}\right)\left[\begin{array}{l}\mathbf{v}_{1}^{T} \\ \mathbf{v}_{2}^{T} \\ \vdots \\ \mathbf{v}_{r}^{T}\end{array}\right] \xrightarrow{\text { result } 6}=\sum_{i=1}^{r} \sigma_{i} \mathbf{u}_{i} \mathbf{v}_{i}^{T} \quad$ Outer product form of SVD

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

Matrix norms and singular values

Definition 1: The spectral norm of a matrix A is the largest singular value of A i.e. the square root of the largest eigenvalue of the positive semidefinite matrix $A^{T} A\left(\right.$ or $\left.A A^{T}\right)$:

$$
\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\sigma_{\max }(A)
$$

Definition 2: The nuclear norm is the sum of all the singular values of A,

$$
\|A\|_{*}=\sum_{i=1}^{\operatorname{rank} k(A)} \sigma_{i}
$$

Definition 3: The Frobenius norm of a matrix $A_{m \times n}$ is defined as,

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}^{2}}
$$

Matrix norms and singular values

Result 8: Suppose that $\operatorname{rank}\left(A_{m \times n}\right)=r$ and $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}$ are A 's singular values, then

$$
\|A\|_{F}=\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}
$$

Proof:

$$
\|A\|_{F}=\sqrt{\operatorname{trace}\left(A^{T} A\right)}=\sqrt{\operatorname{trace}\left(A A^{T}\right)}=\sqrt{\sum_{i=1}^{r} \lambda_{i}}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the positive eigen-values of $A^{T} A\left(\right.$ or $\left.A A^{T}\right)$
Note: From result 5, we can know that $A^{T} A$ (or $A A^{T}$) has and only has r positive eigen-values and all the other eigen-values are zeros.

Outline

- Some prerequisite results
- Singular value decomposition theorem
- Relationship between SVD and EVD
- Economy-sized form and outer product form of SVD
- Matrix norms and singular values
- SVD and linear least squares

SVD and linear least squares

Linear least squares is a general idea for solving linear equations,

$$
\begin{equation*}
A_{m \times n} \mathbf{x}_{n \times 1}=\mathbf{b}_{m \times 1} \tag{1}
\end{equation*}
$$

Using the idea of least squares, Eq. 1 is equivalent to the following problem,

$$
\begin{equation*}
\mathbf{x}^{*}=\underset{\mathbf{x}}{\arg \min }\left\|A_{m \times n} \mathbf{x}_{n \times 1}-\mathbf{b}_{m \times 1}\right\|_{2}^{2} \tag{2}
\end{equation*}
$$

Eq. 2 can be solved by finding the stationary point \mathbf{x}^{*} of $\left\|A_{m \times n} \mathbf{x}_{n \times 1}-\mathbf{b}_{m \times 1}\right\|_{2}^{2}$, i.e.
\mathbf{x}^{*} should satisfy,

$$
\begin{equation*}
A^{T} A \mathbf{x}^{*}=A^{T} \mathbf{b} \tag{3}
\end{equation*}
$$

In Eq. 3, when $\operatorname{rank}(A)=n$ (the columns of A are linearly independent), $\operatorname{rank}\left(A^{T} A\right)=n \longrightarrow A^{T} A$ is invertible $\longmapsto \mathbf{x}^{*}$ is uniquely determined as $\mathbf{x}^{*}=\left(A^{T} A\right)^{-1} A^{T} \mathbf{b}$

How about when $\operatorname{rank}(A)<n$?

SVD and linear least squares

- For solving the linear least squares numerically with a computer, usually we do not use the form of Eq. (3) (though it is elegant) for two reasons
- When $\operatorname{rank}(A)<n, \mathbf{x}^{*}$ can not be determined
- Even though $A^{T} A$ is invertible, the formation of $A^{T} A$ can dramatically degrade the accuracy of the computation
- Instead, we can use the technique of SVD

SVD and linear least squares

Suppose the SVD form of A is,

$$
\begin{gathered}
A_{m \times n}=U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T} \\
A \mathbf{x}-\mathbf{b}=U \Sigma V^{T} \mathbf{x}-\mathbf{b}=U\left(\Sigma V^{T} \mathbf{x}\right)-U\left(U^{T} \mathbf{b}\right) \triangleq U\left(\Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}\right)
\end{gathered}
$$

where $\mathbf{y}_{n \times 1}=V^{T} \mathbf{x}, \mathbf{c}_{m \times 1}=U^{T} \mathbf{b}$

Since U is an orthogonal matrix,

$$
\|A \mathbf{x}-\mathbf{b}\|=\left\|U\left(\Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}\right)\right\|=\left\|\Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}\right\|
$$

Then, our objective is to identify \mathbf{y} that can make $\left\|\Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}\right\|$ have minimum length

SVD and linear least squares

$\Sigma \mathbf{y}_{n \times 1}=\left[\begin{array}{lll}{\left[\begin{array}{lll}\sigma_{1} & & \\ & & \\ & & \\ & & \\ & & \\ & & \sigma_{r}\end{array}\right]} & \\ \boldsymbol{O}_{r \times(n-r)} \\ \boldsymbol{O}_{(m-r) \times r} & & \boldsymbol{O}_{(m-r) \times(n-r)}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]=\left[\begin{array}{l}\sigma_{1} y_{1} \\ \sigma_{2} y_{2} \\ \vdots \\ \sigma_{r} y_{r} \\ 0 \\ \vdots \\ 0\end{array}\right]_{m \times 1} \longrightarrow \Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}=\left[\begin{array}{l}\sigma_{1} y_{1}-c_{1} \\ \sigma_{2} y_{2}-c_{2} \\ \vdots \\ \sigma_{r} y_{r}-c_{r} \\ -c_{r+1} \\ \vdots \\ -c_{m}\end{array}\right]_{m \times 1}$
Then, we simply let $y_{i}=\frac{c_{i}}{\sigma_{i}}, 1 \leq i \leq r$; then, $\left\|\Sigma \mathbf{y}_{n \times 1}-\mathbf{c}_{m \times 1}\right\|$ can get the minimum length $\sqrt{\sum_{i=r+1}^{m} c_{i}^{2}}$
Note that $y_{r+1} \sim y_{n}$ can be arbitrary

SVD and linear least squares

The operation $y_{i}=\frac{c_{i}}{\sigma_{i}}, 1 \leq i \leq r$ can be simply completed by a matrix multiplication,
where Σ^{+}means transposing Σ and inverting all non-zero diagonal entries
Finally,

$$
\mathbf{x}=V \mathbf{y}_{n \times 1}=V \Sigma^{+} \mathbf{c}_{m \times 1}=V \Sigma^{+} U^{T} \mathbf{b}
$$

SVD and linear least squares

- Some notes about the generalized inverse used in linear least squares
- It does not have requirements for the rank of A
- It can guarantee that the obtained solution can make $\|A \mathbf{x}-\mathbf{b}\|$ having the minimum length; but the solution may be not unique
*)

```
```

(4875)

```
```

(4875)

```
```

(4875)

```
```

