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Some Prerequisite Results

Result 1: Suppose that                         , then( )m nrank A r× = ( ) ( )T Tr r rA A AA= =

Proof: Let’s prove if                    , then ( )m nr A r× = ( ) ( )Tr r rAA A = =

Given an             ,  if1n×∈x  A =x 0 TA A =x 0

Given an             ,  if1n×∈x 

TA A =x 0

0T TA A =x x

( ) 0T AA =xx A =x 0

TA A
A

 =


=

x 0
x 0

have the same solutions

( ) ( )Tr r rAA A = =

Following a similar way, we can prove ( ) ( )Tr r rAAA = =
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Some Prerequisite Results

Result 2: If A is an          real symmetric matrix and r(A)=r, then

Proof: Since A is an          real symmetric matrix, A can be diagonally decomposed as

n n×
A has and only has r non-zero eigen-values

n n×
1

2 1

n

A P P

λ
λ

λ

−

 
 
 =
 
 
 



, where P is an invertible matrix and       are A’s n eigen-values

Since multiplied by an invertible matrix, a matrix’s rank remains

( )

1

2

n

r r rA

λ
λ

λ
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has r non-zeros diagonal entries
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Some Prerequisite Results

Result 3: Suppose A is an          matrix, then

Proof:

m n×
( )T

n nA A × and are both positive semi-definite matrices( )T
m mAA ×

( ) ( ),0 T T TA AA A∀ ≠ ≤ =x 0 x xx x

is positive semi-definite( )T
n nA A ×

Following a similar way, we can prove                 is also positive semi-definite( )T
m mAA ×
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Some Prerequisite Results

Result 4: Suppose A is an          matrix, then

Proof:

m n×
( )T

n nA A × and have the same nonzero eigen-values( )T
m mAA ×

Multiply A on both sides,

Suppose that     is the eigen-value of                 and     is the associated eigen-
vector, then

λ ( )T
n nA A × x

TA A λ=x x

( ) ( )TAA A Aλ=x x

It can be seen that, and are eigen-value and the associated eigen-vector ofλ Ax TAA
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Singular Value Decomposition’s General Form

SVD decomposition theorem: Any matrix          can be decomposed as the following 
form,

where U and V are two orthogonal matrices, r(A) =r, 

T
m n m m m n n nA U V× × × ×= Σ

m nA ×

( )

( ) ( ) ( )

( )

( ) ( ) ( )

1

2
r r rn r n r

m n
rm r m r n r m n

r

rm r m r n r m n

σ
σ

σ

× ×− −
×

× ×− − − ×

× ×− − − ×

  
  
  ∑    ∑ = =         
 
 



O O
O O

O O

1 2, ,..., 0rσ σ σ > are called the singular values of A

In general case,           is not unique. However, if             are arranged in order,          is 
uniquely determined by A. In the following, we require that 

m n×∑ { } 1

r
i i

σ
= m n×∑

1 2 ,..., 0rσ σ σ≥ ≥ ≥ >
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Relationship between SVD and EVD

Result 5: Suppose that                         , then                 has and only has r positive 
eigen-values and all its other eigen-values are zeros

( )m nrank A r× = ( )T
n nA A ×

Proof:

( )m nr A r× = ( )Tr rA A =
result 1

TA A is a real symmetric matrix
TA A has and only has r non-zero eigen-values

result 2

Using result 3,         is positive semi-definiteTA A TA Aeigen-values of         are all non-negative

TA A has and only has r positive eigen-values 
and all its other eigen-values are zeros
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Relationship between SVD and EVD

If                 ,                    , using result 5,            ( )m nr A r× =m nA ×∈
TA A

( ) ( )

( ) ( ) ( )

1

2
' 'r n r TT

n n

r

rn r n r n r n n

V VA A

λ
λ

λ

× −
×

× ×− − − ×

  
  
  
  =
  
  
 
 



O

O O

can be orthogonally diagonalized as,

On the other hand, based on SVD, we 
know that                  , thenTA U V= Σ

( ) ( ) ( )
( )

( )

( ) ( ) ( )

2
1

2
2

2

TT TT
n n m n m n

T T T TT
n n

r n r T

r

rn r n r n r n n

U V U VA A
V U U V V V

V V

σ

σ

σ

× × ×

×

× −

× ×− − − ×

= Σ Σ

= Σ Σ = Σ Σ

  
  
  
  =   
    
  



O

O O

(Note:                                 and        is an 
orthogonal matrix)

1 2 ... 0rλ λ λ≥ ≥ ≥ >

,1i i i rσ λ= ≤ ≤

'V
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Relationship between SVD and EVD

• We can have the following conclusions about the SVD of A and the EVD 
of 

– A has r singular values              (positive) and ATA has r positive eigen-values         
(all its other eigen-values are zeros) , and 

– A’s right singular matrix V is actually the orthogonal matrix      obtained when 
performing orthogonally diagonalization to ATA; but it needs to be noted that V (     ) 
is not unique

• Using similar derivations, we can have the following conclusions about the 
SVD of A and the EVD of 

– AAT has the same r positive eigen-values (result 4) , and 
– A’s left singular matrix U is actually the orthogonal matrix obtained when 

performing orthogonally diagonalization to AAT; but it needs to be noted that both of 
them are not unique

TA A
{ } 1

r
i i

σ
= { } 1

r
i i
λ

=

i iσ λ=
'V

'V

TAA
{ } 1

r
i i
λ

= i iσ λ=



Tongji University

Relationship between SVD and EVD

• Consider the following special cases 
– If A is an          matrix, how about its eigen-values and singular values?
– If A is an          real symmetric matrix, how about its eigen-values and singular 

values?
– If A is an          real symmetric and positive semi-definite matrix, how about its 

eigen-values and singular values?

n n×
n n×

n n×
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Relationship between SVD and EVD

Result 6: Suppose that         is a positive semi-definite (real symmetric) matrix. 
Then, its eigen-values and singular values are the same.

n nA ×

Proof:
Suppose that         ( )rank rA =

n nA × is positive semi-definite 
(and real symmetric)

A
result 5

has and only has r positive eigen-values 
and all its other eigen-values are zeros

1 2 ... 0rλ λ λ≥ ≥ ≥ >

1

2
T

r

n n

O
A U U

O O

λ
λ

λ

×

  
  
  
  =
  
  
 
 



2
1

2
2

2

T T

r

n n

O
A A U U

O O

λ

λ

λ

×

  
  
  
  =
  
    
  



A’s singular values are

( )2 1i i i i rσ λ λ= = ≤ ≤
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Economy-sized form of SVD

• For a matrix                , if           is much smaller then m and n, it will be 
more memory efficient to store the economy-sized SVD 

m nA ×∈ ( )r A

( )

( ) ( ) ( )

1

1

2

1 1

1

1
1

2
1

[ ,..., | ,..., ] -----

[ ,..., ]

T

T
r

r n rT
m n m m m n n n r r m

T
r r

rm r m r n r
T
n

T

r m r r r
T
r

r

O
A U V

O O

U V

σ
σ

σ

σ
σ

σ

× −
× × × × +

+

× ×− − −
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  = ∑ =  
    
    
      

  
 

  
  = = Σ  
    

 

v

v
u u u u

v

v

v
u u
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T
n r×
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Outer product form of SVD

In general, if X is an            matrix and Y is a           matrix, the matrix product can 
be expressed as, 

m k× k n×

( )[ ] ( )[ ]1 1
1

k

i im n
i

XY col rowX Y× ×
=

=∑

Note: each submatrix [col(X)i][row(Y)i] is of rank 1

Result 7: Outer product form of a matrix product.
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Outer product form of SVD

( )

1

2
1 1 2 2, ,...,

T

T

r r

T
r

A XY σ σ σ

 
 
 = =  
 
  

v
v

u u u

v


Let’s consider the economy-sized SVD of A,

1
1

2
1[ ,..., ]

T

m n r
T
r

r
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σ
σ

σ
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Let ( )

11

2 2
1 1 1 2 2[ ,..., ] ,, ,...,

T
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r r r
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r r

X Y
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σ

σ σ σ

σ
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Outer product form of SVD
1

r
T

i i i
i
σ

=

=∑ u v
result 6
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Matrix norms and singular values

Definition 1: The spectral norm of a matrix A is the largest singular value of A
i.e. the square root of the largest eigenvalue of the positive semidefinite matrix 
ATA (or AAT):

max max2
( ) ( )TA A A Aλ σ= =

Definition 2: The nuclear norm is the sum of all the singular values of A,
( )

*
1

rank A

i
i

A σ
=

= ∑

Definition 3: The Frobenius norm of a matrix is defined as,

2

1 1

m n

ijF
i j

A a
= =

= ∑∑

m nA ×
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Result 8: Suppose that                          and                    are A’s singular values, then( )m nrank A r× = 1 2, ,..., rσ σ σ

Proof:

( ) ( ) 2

1 1

r r
T T

i iF
i i

A trace A A trace AA λ σ
= =

= = = =∑ ∑

2

1

r

iF
i

A σ
=

= ∑

where                   are the positive eigen-values of ATA (or AAT) 1 2, ,..., rλ λ λ

Note: From result 5, we can know that ATA (or AAT) has and only has r
positive eigen-values and all the other eigen-values are zeros.

Matrix norms and singular values
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SVD and linear least squares

Linear least squares is a general idea for solving linear equations,

Using the idea of least squares, Eq. 1 is equivalent to the following problem,
1 1m n n mA × × ×=x b

2*
1 1 2

arg min m n n mA × × ×= −
x

x x b

(1)

(2)

Eq. 2 can be solved by finding the stationary point x* of                             , i.e.
2

1 1 2m n n mA × × ×−x b

x* should satisfy,
*T TA A A=x b (3)

In Eq. 3, when                       (the columns of A are linearly independent) ,( )rank nA =

( )Trank nA A = TA A is invertible x* is uniquely determined as ( ) 1* TT AA A
−=x b

How about when rank(A)<n?
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SVD and linear least squares

• For solving the linear least squares numerically with a computer, usually 
we do not use the form of Eq. (3) (though it is elegant) for two reasons

– When rank(A)<n, x* can not be determined
– Even though ATA is invertible, the formation of ATA can dramatically degrade the 

accuracy of the computation
• Instead, we can use the technique of SVD
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SVD and linear least squares

Suppose the SVD form of A is,
T

m n m m m n n nA U V× × × ×= Σ

( ) ( ) ( )1 1
T T T

n mA U V U U UV U × ×− = Σ − = − Σ −Σx b x b y cx b 

where 1 1,T T
n mV U× ×= =y x c b

Since U is an orthogonal matrix,

( )1 1 1 1n m n mUA × × × ×= Σ − = Σ −− y c y cx b

Then, our objective is to identify y that can make                      have minimum length1 1n m× ×Σ −y c
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SVD and linear least squares

( )

( ) ( ) ( )

1 1

1 2 2
1

2
2

1

1

0
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n r r
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rm r m r n r m n
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y
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y
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y

σ
σ σ

σ
σ

σ

× −
×
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                  Σ = =                 
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O

O O

1 1 1

2 2 2

1 1

1
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σ× ×

+

×
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 − 
 
 

Σ − = − 
 −
 
 
 − 
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Then, we simply let                           ; then,                      can get the minimum length,1i
i

i

cy i r
σ

= ≤ ≤ 1 1n m× ×Σ −y c 2

1

m

i
i r

c
= +
∑

Note that yr+1~yn can be arbitrary
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SVD and linear least squares

The operation                              can be simply completed by a matrix multiplication,,1i
i

i

cy i r
σ

= ≤ ≤

( )

( ) ( ) ( )

1 1
1

2 2
1

2 2
1

1

1

1
/
/

1

/
01

0

r m r
mr r

m m

r

n
rn r n r m r n m

c
c

c
c

c

c

σ
σ

σ

σ
σ

σ

× − +
×

×

×
× ×− − − ×

  
   
   
     
     
     = = Σ     
     
     
           

y c










O

O O

where       means transposing     and inverting all non-zero diagonal entries+Σ Σ
Finally,

1 1
T

n mV V V U+ +
× ×= = Σ = Σx y c b Moore-Penrose inverse
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SVD and linear least squares

• Some notes about the generalized inverse used in linear least squares
– It does not have requirements for the rank of A
– It can guarantee that the obtained solution can make                 having the minimum 

length; but the solution may be not unique 
A −x b
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