Assignment 1 (Due: Oct. 22, 2023)

(Send your solutions to our TA, Tianjun Zhang, 1911036@tongji.edu.cn)

1. (Programming) AdaBoost is a powerful classification tool, with which a strong classifier can be learned by composing a set of weak classifiers. In our lecture, we use a vivid example to demonstrate the basic idea of AdaBoost. Now, your task is to implement this demo.

Training:
There are 10 samples on a 2-D plane and information of the i th sample is given as $\left(x_{i}, y_{i}, l_{i}\right)$, where $\left(x_{i}, y_{i}\right)$ is its coordinate and l_{i} is its label. 10 samples are $(80,144$, $+1),(93,232,+1),(136,275,-1),(147,131,-1),(159,69,+1),(214,31,+1),(214$, $152,-1),(257,83,+1),(307,62,-1),(307,231,-1)$. Weak classifiers are vertical or horizontal lines as described in our lecture. The final trained strong classifier actually is a function having the form,

$$
\text { label }=\operatorname{strongClassifier}(x, y)
$$

Finally, test your strong classifier to verify whether it can correctly classify all the training samples.

2. (Math) There are $n p$-dimensional data points and we can stack them into a data matrix, $\quad \mathbf{X}=\left\{\mathbf{x}_{i}\right\}_{i=1}^{n}, \mathbf{x}_{i} \in \mathbb{R}^{p \times 1}, \mathbf{X} \in \mathbb{R}^{p \times n}$. The covariance matrix of \mathbf{X} is $\mathbf{C}=\frac{1}{n-1} \sum_{i=1}^{n}\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T}$, where $\boldsymbol{\mu}=\frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_{i}$ (actually, it is the mean of the data points).

1) Please prove that \mathbf{C} is positive semi-definite.
2) Based on discussions in our lecture, we know that if $\boldsymbol{\alpha}_{1}$ is the eigen-vector
associated with the largest eigen-value of \mathbf{C}, the data projections along $\boldsymbol{\alpha}_{1}$ will have the largest variance. Now let's consider such an orientation $\boldsymbol{\alpha}_{2}$. It is orthogonal to $\boldsymbol{\alpha}_{1}$; and among all the orientations orthogonal to $\boldsymbol{\alpha}_{1}$, the variance of data projections to $\boldsymbol{\alpha}_{2}$ is the largest one. Please prove that: $\boldsymbol{\alpha}_{2}$ actually is the eigen-vector associated to \mathbf{C} 's second largest eigen-value. (we can assume that $\boldsymbol{\alpha}_{2}$ is a unit-vector)
