
32 It is commonplace to refer to the total set of the camera intrinsic matrix parameters and the distortion param‐
eters as simply the intrinsic parameters or the intrinsics. In some cases, the matrix parameters will also be
referred to as the linear intrinsic parameters (because they collectively define a linear transformation), while
the distortion parameters are referred to as the nonlinear intrinsic parameters.

The final argument, mask, is used only with the robust methods, and it is an output. If
an array is provided, cv::findHomography() will fill that array indicating which
points were actually used in the best computation of H.

The return value will be a 3 × 3 matrix. Because there are only eight free parameters
in the homography matrix, we chose a normalization where H33 = 1 (which is usually
possible except for the quite rare singular case H33 = 0). Scaling the homography
could be applied to the ninth homography parameter, but usually prefer to instead
scale by multiplying the entire homography matrix by a scale factor, as described ear‐
lier in this chapter.

Camera Calibration
We finally arrive at camera calibration for camera intrinsics and distortion parame‐
ters. In this section, we’ll explain how to compute these values using cv::calibrate
Camera() and also how to use these models to correct distortions in the images that
the calibrated camera would have otherwise produced. First we will say a little more
about just how many views of a chessboard are necessary in order to solve for the
intrinsics and distortion. Then we’ll offer a high-level overview of how OpenCV
actually solves this system before moving on to the code that makes it all easy to do.

How many chess corners for how many parameters?
To begin, it will prove instructive to review our unknowns; that is, how many param‐
eters are we attempting to solve for through calibration? In the OpenCV case, we
have four parameters associated with the camera intrinsic matrix (fx, fy, cx, cy) and five
(or more) distortion parameters—the latter consisting of three (or more) radial
parameters (k1, k2, k3 [, k4, k5, k6]) and the two tangential (p1, p2).32 The intrinsic
parameters control the linear projective transform that relates a physical object to the
produced image. As a result, they are entangled with the extrinsic parameters, which
tell us where that object is actually located.

The distortion parameters are tied to the two-dimensional geometry of how a pattern
of points gets distorted in the final image. In principle, then, it would seem that just
three corner points in a known pattern, yielding six pieces of information, might be
all that is needed to solve for our five distortion parameters. Thus a single view of our
calibration chessboard could be enough.
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However, because of the coupling between the intrinsic parameters and the extrinsic
parameters, it turns out that one will not be enough. To understand this, first note
that the extrinsic parameters include three rotation parameters (ψ, ϕ, θ) and three
translation parameters (Tx, Ty, Tz) for a total of six per view of the chessboard.
Together, the four parameters of the camera intrinsic matrix and six extrinsic param‐
eters make 10 altogether that we must solve for, in the case of a single view, and 6
more for each additional view.

Let’s say we have N corners and K images of the chessboard (in different positions).
How many views and corners must we see so that there will be enough constraints to
solve for all these parameters?

• K images of the chessboard provide 2 · N · K constraints (the factor of 2 arises
because each point on the image has both an x- and a y-coordinate).

• Ignoring the distortion parameters for the moment, we have 4 intrinsic parame‐
ters and 6 · K extrinsic parameters (since we need to find the 6 parameters of the
chessboard location in each of the K views).

• Solving then requires that we have: 2 · N · K ≥ 6 · K + 4 (or, equivalently, (N – 3) ·
K ≥ 2).

So it would seem that if N = 5, then we need only K = 1 image, but watch out! For us,
K (the number of images) must be more than 1. The reason for requiring K > 1 is that
we are using chessboards for calibration to fit a homography matrix for each of the K
views. As discussed previously, a homography can yield at most eight parameters
from four (x, y) pairs. This is because only four points are needed to express every‐
thing that a planar perspective view can do: it can stretch a square in four different
directions at once, turning it into any quadrilateral (see the perspective images in
Chapter 11). So, no matter how many corners we detect on a plane, we only get four
corners’ worth of information. Per chessboard view, then, the equation can give us
only four corners of information or (4 – 3) · K > 1, which means K > 1. This implies
that two views of a 3 × 3 chessboard (counting only internal corners) are the mini‐
mum that could solve our calibration problem. Consideration for noise and numeri‐
cal stability is typically what requires the collection of more images of a larger
chessboard. In practice, for high-quality results, you’ll need at least 10 images of a
7 × 8 or larger chessboard (and that’s only if you move the chessboard enough
between images to obtain a “rich” set of views).

This disparity between the theoretically minimal 2 images and the practically
required 10 or more views is a result of the very high degree of sensitivity that the
intrinsic parameters have on even very small noise.

666 | Chapter 18: Camera Models and Calibration


