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Abstract 
 

A novel feature extraction method, namely 
monogenic binary pattern (MBP), is proposed in this 
paper based on the theory of monogenic signal 
analysis, and the histogram of MBP (HMBP) is 
subsequently presented for robust face representation 
and recognition. MBP consists of two parts: one is 
monogenic magnitude encoded via uniform LBP, and 
the other is monogenic orientation encoded as 
quadrant-bit codes. The HMBP is established by 
concatenating the histograms of MBP of all sub-
regions. Compared with the well-known and powerful 
Gabor filtering based LBP schemes, one clear 
advantage of HMBP is its lower time and space 
complexity because monogenic signal analysis needs 
fewer convolutions and generates more compact 
feature vectors. The experimental results on the AR 
and FERET face databases validate that the proposed 
MBP algorithm has better performance than or 
comparable performance with state-of-the-art local 
feature based methods but with significantly lower 
time and space complexity. 
 
 
1. Introduction 

 
As one of the most active and visible research 

topics in computer vision, pattern recognition and 
biometrics, face recognition has been extensively 
studied in the past two decades [1], yet it is still a 
challenging problem in practice due to uncontrolled 
environments, occlusions and variations in pose, 
illumination, expression and aging, etc. Various 
methods have been proposed for face feature 
extraction, among which the representatives include 
Eigen-face [2], Fisher-face [3], Gabor Feature based 
Classification (GFC) [4] and LBP methods [5], etc.  

Different from other face recognition methods, LBP 
methods use local structural information and histogram 
of sub-regions to extract and describe facial features. 
Following LBP, LGBPHS [6] was proposed to use 
Gabor filtering to enhance the facial features and then 
extract the local Gabor binary pattern histogram 
sequence, which improves much LBP’s robustness to 
illumination changes. The Gabor phase was also used 
to improve the recognition rate [7-8], and a typical 
method of this class is the HGPP [8], which captures 
the Global Gabor phase and Local Gabor phase 
variation. Despite the high accuracy, the expense of 
the above mentioned Gabor filter based face 
recognition methods is also very expensive: both the 
computational cost and the storage space are high 
because Gabor filtering is usually applied at five 
different scales and along eight different orientations, 
which limits the application of these methods. 

This paper presents a new local facial feature 
extraction method, namely monogenic binary pattern 
(MBP), based on the theory of monogenic signal 
analysis [9], and then proposes to use the histogram of 
MBP (HMBP) to describe the MBP features.  
Monogenic signal is a two-dimensional (2D) 
generalization of the one-dimensional analytic signal, 
through which the multi-resolution magnitude, 
orientation and phase of a 2D signal can be estimated. 
The proposed MBP combines monogenic orientation 
and monogenic magnitude information for face feature 
extraction and description. The advantage of MBP 
over other Gabor based methods [4][6][8] is that it has 
much lower time and space complexity but with better 
or comparable performance. This is mainly because 
monogenic signal analysis is itself a compact 
representation of features with little information loss. 
It does not use steerable filters to create multi-
orientation features like Gabor filters do. HMBP is the 
sub-region spatial histogram sequence of MBP 
features, which is robust to face image variation of 
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lighting, pose, expression and occlusion, etc. The 
proposed MBP method is validated on the AR [10] and 
the FERET [11] face databases. The experimental 
results verified that MBP and HMBP are efficient and 
powerful local feature extractor and descriptor. They 
can achieve high face recognition rate but with low 
time and space complexity.  

The rest of the paper is organized as follows. 
Section 2 presents in detail the MBP scheme for face 
recognition. Section 3 conducts experiments on the AR 
and FERET databases to evaluate the performance of 
the proposed method. Section 4 concludes the paper. 

 
2. MBP for face recognition 

 
2.1. Monogenic representation of face image 

 
The monogenic signal analysis [9] is a framework 

to interpret images in terms of the local phase, the 
local orientation and the local magnitude. Different 
from obtaining Gabor magnitude, orientation and 
phase using steerable Gabor filters, the monogenic 
representation of 2D signals is accomplished via the 
Riesz transform [12]. Specifically, the local magnitude 
A, orientation �  [0 �) and phase �  [0 2�) of a 2D 
signal I can be computed by [9]: 
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where “*” is the convolution operator, G() is the 
Log-Gabor filter in Fourier domain, F represents the 
2D Fourier transform, H=F(h) and x and y are the 
horizontal and vertical frequencies.  

Since Log-Gabor filters are band-pass filters, 
usually multi-scale monogenic representation is 
required to fully describe a signal. Fig. 1 shows the 
monogenic representation of a face image at one scale.  
We can see that the facial local structures are well 
captured in its monogenic components.  

 

    
(a)                 (b)                 (c)                   (d) 

Fig. 1. A face image (a) and its monogenic representation at 
a scale: (b) magnitude component; (c) orientation component 
and (d) phase component. 

 
2.2. Monogenic binary pattern (MBP) 

 
In the monogenic representation of a face image, 

the magnitude A is a measurement of local structure 
energy, and we can use the conventional LBP operator 
[13] to encode the variation of local energy. The LBP 
operator can encode a local 3×3 patch into an 8-bits 
binary code. The uniform LBP operator was later 
proposed [14], which contains at most two bitwise 
transitions from 0 to 1 or vice versa when the binary 
string is considered circular. The uniform LBP uses 6-
bits to describe the local structure information without 
degrading much the performance of LBP. In our 
method, we use the uniform LBP to extract the local 
texture information in the monogenic magnitude 
component, and hence each pixel Z in the magnitude 
code map, denoted by Bm, at each scale will be 6-bits. 

 

 
Fig. 2. Quadrant bit coding of monogenic orientation. 
 
Apart from the magnitude, the monogenic 

orientation � indicates the dominant direction of local 
image variation, which is an important feature in 
image recognition. Here we code the monogenic 
orientation information into a quadrant bit, which is 
illustrated in Fig. 2. A pixel Z in the orientation map at 
each scale is encoded into two bits, ( � �xB Z�

, � �yB Z�
), 

by the following rule: 
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where hx and hy (refer to Eq. (2)) are respectively the 
horizontal and vertical Riesz transform parts of 
monogenic signal representation. 

The monogenic phase information is not used in the 
proposed MBP. How to effectively exploit and code 
the monogenic phase will be our future work.   

 

     
 

Fig. 3. The MBP maps of a face image at three scales. 
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Finally, the proposed MBP is the combination of 
the binary codes of orientation and uniform LBP of 
magnitude, i.e. MBP=( � �xB Z�

, � �yB Z�
, � �mB Z ). It can 

be seen that the MBP at each scale is an 8-bits 
representation of the original face image. Fig. 3 shows 
the MBP maps of a face image at three scales.  
 
2.3. Histogram of MBP (HMBP) 

 
The statistical information of local image patches 

can be captured by local histograms, which are robust 
to the image occlusion and variations of pose, 
expression, and noise, etc. After obtaining the multi-
scale MBP maps of the face image, we construct the 
histogram of MBP (HMBP) through the following 
procedures. First, the MBP maps at each scale are 
divided into multiple non-overlapping regions. Then 
the local histogram is built from each sub-region. 
Finally, all the local histograms are concatenated into a 
single histogram vector to represent the face image. 
Formally, the HMBP feature is formulated as 

� �� �, , 1, , ; 1, 2, ,MBPHMBP H r s r L s S� � �� �       (4) 
where L is the number of sub-regions at each scale; S 
is the total scale of monogenic signal representation (in 
this work 3 scales are used); and HMBP(r,s) is the 
histogram of the rth sub-region at scale s.  
 
2.4. Face recognition by HMBP 

 
In the paper, the similarity between two histograms 

H1 and H2 is defined as their intersection, which is 
computed as follows: 
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where N is the number of bins in the histogram, and 
1
iH  and 

2
iH  denote the frequency of the ith bin 

respectively in H1 and H2. As in [7-8], there are two 
variants to measure the similarity between HMBPs: the 
normal HMBP and the weighted HMBP, which can be 
both formulized as 
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where w(r,s) is the weight of the rth sub-region in the 
sth scale of HMBP. In the case of normal HMBP, all 
w(r,s) equal to 1, while in weighted HMBP, w(r,s) 
varies considering that different sub-regions have 
different contributions to face recognition. The weights 
can be determined based on the Fisher criterion [8]. 

 
3. Experimental results 

 
We test our algorithm on two benchmark face 

databases. One is the subset of AR database, consisting 
of over 4000 images of the frontal view faces from 126 

subjects [10], and the other one is the FERET face 
database [11]. The state-of-the-art local feature based 
methods LBP [5], LGBPHS [6] and HGPP [8] are used 
for comparison (we thank the authors for sharing their 
codes). In the proposed approach, we empirically 
partitioned the face image into 8×8 sub-regions in the 
experiments. 

 
3.1. Time and space complexities 

HGPP, 30

HGPP, 80

HGPP, 90

LGBPHS, 
13.33

LGBPHS, 40 LGBPHS, 40

HMBP, 1HMBP, 3
HMBP, 9

Number of
Convolutions 

Number of Feature
Maps

Relative Length of
Descriptor

 
Fig. 4. Comparison of the time and space complexities 
among HGPP, LGBPHS and HMBP. 

 
Let’s first compare the time and space complexities 

between HMBP, LGBPHS and HGPP. In the feature 
histogram extraction, the convolution is the most time-
consuming processing. As shown in Fig.4, since HGPP 
and LGBPHS both use Gabor filtering for feature 
enhancement, they respectively need 40 and 80 Gabor 
filter convolutions per image. However, since 
monogenic signal representation does not use 
directional Gabor filtering, our method only needs 3 
Log-Gabor filtering and 6 Riesz transforms per image. 
For space complexity, the HGPP produces 90 8-bits 
feature maps per image; LGBPHS produces 40 8-bits 
feature maps per image; while HMBP only produces 3 
8-bits feature maps. That means that the length of 
HGPP and LGBPHS are about 30 and 13 times that of 
HMBP, and thus in similarity computing, HMBP 
needs much less time than HGPP and LGBPHS.  
 
3.2. Experiments on the AR database 

 
In the experiment, we used a subset of the AR 

database [10], consisting of 50 male subjects and 50 
female subjects. In the case of no-occlusion, for each 
subject the seven images with illumination and 
expression changes from Session 1 were taken for 
training, and the other seven images with illumination 
and expression changes from Session 2 were used for 
testing. In the experiment of occlusion, only one 
neutral expression image of the first session was used 
to form the Gallery, and all the partially occluded 
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images of the first session and the second session were 
used as the probes. The rank-1 recognition rates of the 
experiments are listed in Table I. We can see that the 
proposed MBP outperforms LBP and LGBPHS. Its 
recognition rate is slightly less than HGPP. However, 
its time and space complexity is much less than HGPP, 
as we analyzed in section 3.1. 

 
Table I. Rank -1 recognition rates by different methods on 
the AR database. 

Methods No occlusion Occlusion 
sunglass scarf 

HMBP 98.57 92.0 91.50 
HGPP 99.0 93.0 92.33 

LGBPHS 97.71 91.0 89.0 
LBP 97.29 83.71 68.33 
 

3.3. Experiments on the FERET database 
 
The FERET database [11] is often used to validate 

an algorithm’s effectiveness because it contains many 
kinds of image variations. By taking fa subset as a 
gallery, the probe subsets fb and fc were captured with 
expression and illumination variations. Especially, 
Dup1 and Dup2 consist of images that were taken at 
different times with more than one year interval. The 
recognition results by different methods are shown in 
Table II, where the prefix “W” means the weighted 
histogram similarity. From Table II, we can see again 
that the proposed MBP approaches have better 
performance than other methods except for HGPP. 
However, HGPP’s time and space complexity is about 
10 and 30 times than HLMBP. Therefore, the overall 
performance of MBP is better. 

 
Table II. Rank -1 recognition rate by different methods on 
the FERET probe sets. 

Methods FERET probe sets 
Fb Fc Dup I Dup II 

W-HMBP 98.08 98.45 75.76 75.21 
HMBP 97.74 98.45 73.55 72.22 

W-HGPP 97.5 99.5 79.5 77.8 
HGPP 97.6 98.9 77.7 76.1 

W-LGBPHS 98.0 97.0 74.0 71.0 
LGBPHS 94.0 97.0 68.0 53.0 
W-LBP 97.0 79.0 66.0 64.0 

LBP 93.0 51.0 61.0 50.0 

 
4. Conclusion 

 
We proposed a novel face representation model, 

namely monogenic binary model (MBP), based on the 
monogenic signal analysis. After monogenic signal 
transform, we coded the face image into 3 8-bits maps 
by using the magnitude component and the orientation 
component. Then the local histogram of MBP (HMBP) 
was used to represent the face image for matching. 

Compared with the state-of-the-art local feature based 
methods LGBPHS and HGPP, the HMBP has 
significantly lower time and space complexities, yet 
the experimental results on AR and FERET databases 
showed that HMBP outperforms the LBP and 
LGBPHS methods and is only slightly worse than the 
HGPP method. In the future, we will investigate how 
to better exploit the monogenic signal representation 
for more efficient and robust face recognition. 
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