
ARTICLE IN PRESS

Computers in Biology and Medicine 40 (2010) 438–445
Contents lists available at ScienceDirect
Computers in Biology and Medicine
0010-48

doi:10.1

$This

(PolyU
� Corr

E-m
journal homepage: www.elsevier.com/locate/cbm
Retinal vessel extraction by matched filter with first-order
derivative of Gaussian$
Bob Zhang a, Lin Zhang b, Lei Zhang b,�, Fakhri Karray a

a Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada N2L 3G1
b Biometrics Research Center, The Hong Kong Polytechnic University, Hong Kong, China
a r t i c l e i n f o

Article history:

Received 25 July 2009

Accepted 16 February 2010

Keywords:

Retinal image segmentation

Vessel detection

Matched filter

Line detection
25/$ - see front matter & 2010 Elsevier Ltd. A

016/j.compbiomed.2010.02.008

work is supported by the Hong Kong R

5351/08E).

esponding author.

ail address: cslzhang@comp.polyu.edu.hk (L.
a b s t r a c t

Accurate extraction of retinal blood vessels is an important task in computer aided diagnosis of

retinopathy. The matched filter (MF) is a simple yet effective method for vessel extraction. However, a

MF will respond not only to vessels but also to non-vessel edges. This will lead to frequent false vessel

detection. In this paper we propose a novel extension of the MF approach, namely the MF-FDOG, to

detect retinal blood vessels. The proposed MF-FDOG is composed of the original MF, which is a zero-

mean Gaussian function, and the first-order derivative of Gaussian (FDOG). The vessels are detected by

thresholding the retinal image’s response to the MF, while the threshold is adjusted by the image’s

response to the FDOG. The proposed MF-FDOG method is very simple; however, it reduces significantly

the false detections produced by the original MF and detects many fine vessels that are missed by the

MF. It achieves competitive vessel detection results as compared with those state-of-the-art schemes

but with much lower complexity. In addition, it performs well at extracting vessels from pathological

retinal images.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The automated extraction of blood vessels in retinal images is
an important step in computer aided diagnosis and treatment of
diabetic retinopathy [1–8], hypertension [10], glaucoma [11],
obesity [12], arteriosclerosis and retinal artery occlusion, etc.
Vessel extraction is basically a kind of line detection problem and
many methods have been proposed. A class of popular approaches
to vessel segmentation are filtering-based methods [5,9,18–21]
which work by maximizing the response to vessel-like structures.
Mathematical morphology [7,13,22] is another type of approach
by applying morphological operators. Trace-based methods [14]
map-out the global network of blood vessels after edge detection
by tracing out the center lines of vessels. Such methods rely
heavily on the result of edge detection. Machine-Learning based
methods [1,3,14–15] have also been proposed and they can be
divided into two subgroups: supervised methods [1,3,15] and
unsupervised methods [14,16]. Supervised methods exploit some
prior labeling information to decide whether a pixel belongs to a
vessel or not, while unsupervised methods do the vessel
segmentation without any prior labeling knowledge.
ll rights reserved.
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Among the various retinal vessel extraction methods, the
classical matched filter (MF) [9] method is a representative one
and it has advantages of simplicity and effectiveness. The MF
detects vessels by simply filtering and thresholding the original
image. Considering the fact that the cross-section of a vessel can
be modeled as a Gaussian function, a series of Gaussian-shaped
filters can be used to ‘‘match’’ the vessels for detection. However,
the MF will have strong responses to not only vessels but also
non-vessel edges, for example, the edges of bright blobs and red
lesions in retinal images. Therefore, after thresholding the
response image, many false detections can result.

Although the MF employs the prior knowledge that the cross-
section of a vessel in a retinal image is Gaussian shaped, it does
not fully exploit other information of the vessel profile, in
particular that the Gaussian shaped cross section is symmetric
with respect to its peak position. If this property can be properly
used, it is possible to distinguish the symmetric vessel structures
from those asymmetrical non-vessel edges (e.g. the step edge) in a
simple but efficient way, and hence the vessel extraction accuracy
can be improved.

To this end, in this paper we propose a novel method, namely
the matched filter with first-order derivative of the Gaussian
(MF-FDOG), as an extension and generalization of the MF.
Considering that the cross section of a vessel is a symmetric
Gaussian function, we use a pair of filters, the zero-mean Gaussian
filter (i.e. the MF) and the first-order derivative of the Gaussian
(FDOG), to detect the vessels. For a true vessel, it will have a
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strong response to the MF around its peak position, while the local
mean of its response to the FDOG will be close to zero around the
peak position. In contrast, for non-vessel structures, for example
the step edge, it will have high response to the MF but the local
mean of its response to the FDOG will also be high. Such a
difference implies that the vessels and non-vessel edges can be
better distinguished by using the MF-FDOG than by using the MF.

By applying the MF-FDOG filters to the retinal image, two
response maps, H (by the MF) and D (by the FDOG) can be
obtained. The vessel map is detected by applying a threshold T to
H, while the threshold T is adjusted by D so as to remove the
non-vessel edges and extract the fine vessels. As a filtering-based
method, the proposed MF-FDOG preserves the simplicity of the
original MF; however, it could achieve much higher vessel
detection accuracy than the MF, and even comparable to the
results of state-of-the-art methods [1–2,7,13,18], which have
much higher complexity than the MF-FDOG.

The rest of this paper is organized as follows. Section 2 briefly
reviews the MF. Section 3 presents the proposed MF-FDOG
scheme. Section 4 presents experimental results, and Section 5
concludes the paper.
2. The matched filter

The Matched filter (MF) was first proposed in [9] to detect
vessels in retinal images. It makes use of the prior knowledge that
the cross-section of the vessels can be approximated by a
Gaussian function. Therefore, a Gaussian-shaped filter can be
used to ‘‘match’’ the vessels for detection. The MF is defined as

f ðx; yÞ ¼
1ffiffiffiffiffiffi
2p
p
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2s2

� �
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is used to normalize the mean value of the filter to 0 so that
the smooth background can be removed after filtering, and L is the
length of the neighborhood along the y-axis to smooth noise;
the criterion t is a constant and is usually set to 3 because more
than 99% of the area under the Gaussian curve lies within the
range [�3s, 3s]. The parameter L is also chosen based on s. When s

is small, L is set relatively small, and vice versa. In the
implementation, f(x,y) will be rotated to detect the vessels of
different orientations.

The simplicity of the MF makes it popular in vessel detection.
However, a well-known problem of the approach is that it
responds not only to vessels but also to non-vessel edges.
Figs. 1(a)–(b) illustrate this problem by showing the responses
of the MF to a Gaussian function (i.e. the cross-section of a vessel)
and an ideal step edge. We can see clearly that the MF has strong
responses to both the vessel and the step edge. After thresholding,
both the vessel and the non-vessel edge will be detected.
Therefore, the aim of this paper is to find a simple filtering
technique to distinguish the vessels from non-vessel step edges.
1 In application, multiple MF-FDOGs along different orientations will be used.

For the convenience of discussion, we only consider one MF-FDOG here.
3. The MF-FDOG

As we can see in Section 2, the MF has strong responses to both
vessels and step edges because it can ‘‘match’’ the shape of both
vessels and step edges to some extent. Thus it is hard to
distinguish the two types of structures only by the response of
MF. Based on the fact that the vessel cross-section is a symmetric
Gaussian function while the step edge is asymmetric, we propose
a simple scheme by using a pair of filters, instead of only one
filter, to distinguish Gaussian vessel structures from non-vessel
edges.

The MF is a zero-mean Gaussian filter and it is defined in (1). It
can be readily derived that the first-order derivative of the
Gaussian (FDOG) is

gðx; yÞ ¼ �
xffiffiffiffiffiffi

2p
p

s3
exp �

x2

2s2

� �
forjxjrt � s; jyjrL=2 ð2Þ

In this paper, we use the MF and the FDOG as ‘‘MF-FDOG’’ for
vessel detection. The idea comes from the fact that the Gaussian
function (i.e. the cross-section of a vessel) will have a strong
positive response to the MF but its response to the FDOG is
anti-symmetric. In contrast, although the non-vessel step edge
will have partially strong positive responses to MF, its response to
the FDOG is positive and symmetric. Fig. 1 shows this by using a
synthetic signal. Fig. 1(a) plots a Gaussian function and an ideal
step edge; Figs. 1(b-1) and (b-2) show the MF and its response to
the synthetic signal; Figs. 1(c-1) and (c-2) show the FDOG and its
response. Denote by h the signal’s response to the MF. Suppose
that we apply a threshold T to h to detect the vessels. Obviously,
some of the step edge’s responses will be wrongly classified as
vessels. However, if we could properly exploit their different
responses to the FDOG, as shown in Fig. 1(c-2), the vessels and
non-vessel edges can be better distinguished by thresholding
their responses to MF. Unfortunately, in the original FDOG
responses, the magnitude around the Gaussian peak (position
100) and the step edge (position 300) change rapidly. Therefore,
directly using the FDOG response is not robust to tell the two
types of structures.

Denote by d the response of the input signal to the FDOG. Let
us calculate the local mean of d, denoted by dm. The local mean
value of an element in d is defined as the average of its
neighboring elements. Fig. 1(d) shows the dm of the response d

in Fig. 1(c-2). We can see that in the peak area of the Gaussian
function there are strong responses in h (refer to Fig. 1(b-2)),
while the corresponding responses in dm (refer to Fig. 1(d)) are
very low. In contrast, in the neighborhood of the step edge there
are also strong responses in h but the corresponding responses in
dm are very high. Therefore, the local mean signal dm can be used
to adjust the threshold T to detect the true vessels while removing
the non-vessel edges. In other words, T should depend on dm. If
the magnitude in dm is low, this implies that a vessel may appear
in the neighborhood, and hence the threshold T applied to h can
be small to detect the vessels; if the magnitude in dm is high, this
implies that some non-vessel edges may appear, and hence the
threshold T can be high to suppress the non-vessel edges.

To this end, we propose a thresholding scheme by using the
MF-FDOG for retinal vessel detection. The threshold is applied to
the retinal image’s response to MF but the threshold level is
adjusted by the image’s response to FDOG. After filtering the
retinal image with the MF-FDOG filters, two response images, H

(by the MF) and D (by the FDOG) are obtained.1 The local mean
image of D is calculated by filtering D with a mean filter:

Dm ¼D�W ð3Þ

where W is a w�w filter whose elements are all 1/w2. The local
mean image Dm is then normalized so that each element is within
[0, 1]. We denote by Dm the normalized image of Dm.

The threshold T is then set as

T ¼ ð1þDmÞ � Tc ð4Þ
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Fig. 1. Responses of the MF and the FDOG to a Gaussian line cross-section and an ideal step edge: (a) a Gaussian line cross-section and an ideal step edge, (b-1) the MF and

(b-2) its filter response, (c-1) the FDOG and (c-2) its filter response and (d) the local mean of the response to the FDOG.
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where Tc is a reference threshold. In this paper, we set Tc as
follows:

Tc ¼ c � mH ð5Þ

where mH is the mean value of the response image H, and c is a
constant which can be set between 2 and 3 based on our
experiment experience. By applying T to H, the final vessel map
MH is obtained as

MH ¼ 1 Hðx; yÞZTðx; yÞ

MH ¼ 0 Hðx; yÞoTðx; yÞ

(
ð6Þ

It can be seen from (3)–(6) that if there is a vessel in the image,
then at the corresponding area the magnitude in Dm will be weak,
and hence the threshold TH will be lowered. Thus this vessel can
be easily detected by (6). If there are some non-vessel structures
in the image, the corresponding magnitude in Dm will be high, and
hence the threshold TH is raised. Thus these non-vessel edges can
be suppressed.

We use an example to illustrate the proposed MF-FDOG
scheme in Fig. 2. Fig. 2(a) shows an original image ‘‘im0001’’ from
the STARE database and it can be clearly seen that there are bright
lesions in the middle of the image. Fig. 2(b) shows the response
map to MF. It can be seen that MF has strong responses to both
vessels and the bright lesions. Fig. 2(c) shows the local mean map
of the response to FDOG, i.e. Dm. It can be seen that the FDOG
response has a higher magnitude (brighter pixels) in the center
area where hard exudates are located, while the surrounding
vessels produce a lower magnitude (darker pixels). Combining
this with the MF response which has higher magnitudes for
vessels and lower magnitudes for non-vessels, we can better
separate vessel structures from non-vessel structures. Fig. 2(d) is
the vessel extraction result of the MF by applying a global
threshold to Fig. 2(b), while Fig. 2(e) is the result of the proposed
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Fig. 2. Illustration of the proposed MF-FDOG retinal vessel extraction scheme: (a) the original image im0001 from the STARE database, (b) the response map to MF,

(c) the local mean of the response to FDOG, (d) the vessel extraction result after applying a global threshold to the MF response map, (e) the extraction result of the

proposed scheme and (f) the ground truth vessel map.

Table 1
Vessel extraction results on the STARE database.

Method TPR FPR Accuracy

2nd Human observer 0.8949 0.0610 0.9354

B. Zhang et al. / Computers in Biology and Medicine 40 (2010) 438–445 441
approach. It can be clearly seen that the false detection caused by
the bright lesion is greatly reduced, while many fine vessels
missed in Fig. 2(d) are detected in Fig. 2(e). The ground truth for
this image is shown in Fig. 2(f). We see that the proposed
MF-FDOG scheme can more effectively discriminate between true
retinal vessels and non-vessel edges than the conventional MF.
Hoover [5] 0.6751 0.0433 0.9267

Staal [1] 0.6970 0.0190 0.9516

Soares [2] 0.7165 0.0252 0.9480

Mendonc-a [7] 0.6996 0.0270 0.9440

Matched filter [9] 0.6134 0.0245 0.9384

Martinez-Perez [8] 0.7506 0.0431 0.9410

MF-FDOG 0.7177 0.0247 0.9484
4. Experimental results

In order to extract both thick and thin vessels in the retinal
image, we apply a multi-scale MF-FDOG approach. In other words,
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Table 2
Vessel extraction results on the STARE database (normal versus abnormal cases).

Method TPR FPR Accuracy

Normal cases

2nd Human observer 0.9646 0.0764 0.9283

Hoover [5] 0.6766 0.0338 0.9324

Mendonc-a [7] 0.7258 0.0209 0.9492

Soares [2] 0.7554 0.0188 0.9542

Matched filter[9] 0.7335 0.0218 0.9486

MF-FDOG 0.7526 0.0221 0.9510

Abnormal cases

2nd Human observer 0.8252 0.0456 0.9425

Hoover [5] 0.6736 0.0528 0.9211

Mendonc-a[7] 0.6733 0.0331 0.9388

Soares[2] 0.6869 0.0318 0.9416

Matched filter[9] 0.5881 0.0384 0.9276

MF-FDOG 0.7166 0.0327 0.9439

Fig. 3. (a) The original image im0002 from the STARE database, (b) the ground truth vessel map, the vessel extraction results by (c) MF, (d) Hoover [5], (e) Soares [2] and

(f) the proposed MF-FDOG.

Table 3
Vessel extraction results for the DRIVE database.

Method TPR FPR Accuracy

2nd Human observer 0.7761 0.0275 0.9473

Staal [1] 0.7194 0.0227 0.9442

Soares [2] 0.7283 0.0212 0.9466

Mendonc-a [7] 0.7344 0.0236 0.9452

Matched filter [9] 0.6168 0.0259 0.9284

Jiang [6] – – 0.9212

Zana [13] – – 0.9377

Martinez-Perez [8] 0.7246 0.0345 0.9344

Garg [16] – – 0.9361

Perfetti [17] – – 0.9261

Cinsdikici [18] – – 0.9293

Al-Rawi [19] – – 0.9510

MF-FDOG 0.7120 0.0276 0.9382

B. Zhang et al. / Computers in Biology and Medicine 40 (2010) 438–445442
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Fig. 4. (a) The original image 3 from the DRIVE database, (b) the ground truth vessel map, the vessel extraction result by (c) the proposed MF-FDOG.

2 Since the result of Staal’s method [1] is not available for this experiment, we

did not list it in Table 2.
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we use a large scale to detect thick vessels and a small scale to
locate thin vessels. The results of both extractions are then simply
combined using the logical OR operation. The key parameters in
our experiments are set as follows: s=1.5 and L=9 (used for wide
vessels), s=1 and L=5 (used for thin vessels) (refer to Eqs. (1) and
(2)), W=31�31 (refer to Eq. (3)), and c=2.3 (refer to Eq. (5)) and 8
directions were used in MF-FDOG filtering. These parameters
were chosen based on our experiment experience.

We tested the proposed MF-FDOG method on two publicly
available databases, the STARE database [5] and the DRIVE
database [1]. The STARE database consists of retinal images
captured by the TopCon TRV-50 fundus camera at a 351 field
of view (FOV), which were digitized with 24-bit gray-scale
resolution and a spatial resolution of 700�605 pixels. There are
20 images, 10 of which are from healthy ocular fundus and the
other 10 are from unhealthy ones. The database also provides
hand-labeled images as the ground truth for vessel segmentation
so that the algorithms can be evaluated for comparison. The
DRIVE database consists of 40 images captured by the Canon CR5
camera at 451 FOV, which were digitized at 24 bit with a spatial
resolution of 565�584 pixels. The 40 images were divided into a
training set and a test set by the authors of the database. The
results of the manual segmentation are available for the two sets.
For the images in the test set, a second independent manual
segmentation is also available.

To compare different retinal vessel segmentation algorithms,
we select (1) detection accuracy, (2) the corresponding TPR (true
positive rate), and (3) the FPR (false positive rate) at that accuracy
as our performance measures. These performance measures were
defined and widely used in literature [1–8,15]. The detection
accuracy is defined as the ratio of the total number of correctly
classified pixels to the number of pixels inside the FOV. The TPR is
defined as the ratio of the number of correctly classified vessel
pixels to the number of total vessel pixels in the ground truth. The
FPR is defined as the ratio of the number of non-vessel pixels
inside the FOV but classified as vessel pixels, to the number of
non-vessel pixels inside FOV in the ground truth.

Table 1 presents the experimental results on the STARE
database by different methods. The performance measures of
Staal [1], Mendonc-a [7] and Martinez-Perez [8] were obtained
from their original papers. For Soares [2] and Hoover [5], their
performance measures were calculated using the segmented
images from their websites. The FOV used for the STARE
database was generated by the code provided by Soares. All the
20 images in STARE were used in this experiment. (Staal’s method
[1] used 19 of the 20 images for testing with 10 normal and
9 pathological). The hand-labeled images by the first human
expert were used as ground truth. The TPR measure of Martinez-
Perez’s method [8] is higher than others because it was calculated
at a higher FPR level. Overall its accuracy is similar to that of
others. To facilitate the comparison of our method with Soares’ [2]
and Mendonc-a’s [7] methods, we calculated the average TPR
corresponding to an FPR of around 0.025. The experimental
results on the STARE database show that the proposed MF-FDOG
performs much better than the original MF, also outperforms
Hoover’s and Mendonc-a’s methods, and is slightly better than
Soares’ method. It has similar performances to the other state-of-
the-art methods but with much less computational cost.

As stated before, one important motivation of the proposed
MF-FDOG method is to suppress the false response of the MF to
the lesions and blobs that will often appear in the abnormal
retinal images. In order to demonstrate the performance of our
method in such pathological cases, we compare the results by
different methods on the normal and abnormal images in the
STARE database in Table 2.2 Experimental results clearly show
that for the abnormal cases, the proposed MF-FDOG method
performs significantly better than the MF and Hoover’s method,
and it achieves better results than Mendonc-a’s and Soares’
methods. Fig. 3 shows an example for visual inspection.

Table 3 presents the results on the DRIVE database. The
performance measures of Mendonc-a [7], Martinez-Perez [8], Garg
[16], Perfetti [17], Cinsdikici [18], Al-Rawi [19] were obtained
from their original papers while Staal [1] and Soares [2] were
calculated using the segmented images from their websites.
Jiang’s [6] and Zana’s [13] methods happened to be published a
few years before DRIVE was established, so their results in Table 3
were implemented by Staal [1] and Niemeijer [3], respectively,
with no TPR or FPR given. The DRIVE database provides its own
FOV. All 20 images in the test set were used in the experiment
with the hand-labeled images by the first human expert
designated as ground truth. The experimental results on the
DRIVE database again validate that the proposed MF-FDOG
performs much better than the MF, while it is slightly inferior
to some state-of-the-art methods. Fig. 4 illustrates an example of
vessel extraction using DRIVE.

To evaluate the proposed MF-FDOG with respect to higher true
positives with false positiveso0.05, we plot the ROC curves for
both the DRIVE (dotted line) and STARE (solid line) database in
Fig. 5. Each point on the curve represents a different threshold
value used to segment the vessels. We can see that the proposed
MF-FDOG method has good performance when FP40.02.
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Table 4
Running time per image in the STARE database.

Method System environment Running time

Soares [2] P-III 1.5 GHz, 512 Mb RAM, Matlab 3.5 min

Mendonc-a [7] P-IV 3.2 GHz, 960 Mb RAM, Matlab 3 min

MF-FDOG P-III 1.5 GHz, 512 Mb RAM, Matlab 10 s
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The proposed MF-FDOG is competitive with other state-of-the-
art methods when using the STARE database (see Table 1), and is
particularly strong in all three performance measures when
dealing with abnormal cases (see Table 2). It falls behind some
state-of-the-art methods when the DRIVE database is used (see
Table 3) because the proposed MF-FDOG has advantages in
dealing with pathological retinal images but most of the images
in the DRIVE test set are normal images from healthy subjects.
In addition, some non-vessel structures in retinal images can be
very complex and hard to be modeled by step edges. We admit
that in such cases our method may fail.

In Table 4 we list the running time of our method in
comparison with state-of-the-art methods [2,7].3 We see that
the MF-FDOG requires much less computational cost. Without
optimization of the code, it will take about 10 s to process one
image in the STARE database on a PC with a P-III 1.5 GHz CPU and
512MB RAM.
5. Conclusion

We proposed a novel retinal blood-vessel extraction method,
namely the MF-FDOG, by using both the matched filter (MF) and
the first-order-derivative of the Gaussian (FDOG). The retinal
vessels were detected by simply thresholding the retinal image’s
response to the MF but the threshold was adjusted by the image’s
response to the FDOG. Compared with the MF, the MF-FDOG can
better distinguish the true vessel structures from non-vessel
structures such as blobs and lesions. The experimental results
3 We ran the code of [2] to calculate the running time. The running time of [7]

was from the original paper.
demonstrated that it significantly reduces the false detections
generated by the MF and detects many fine vessels that the MF
will miss. In particular, the MF-FDOG can extract effectively the
vessels in pathological images, leading to competitive results as
compared with state-of-the-art schemes; at the same time it has
much lower complexity and is much easier to implement.

The use of multiple scales to extract both thick and thin vessels
followed by a logical OR to combine the results is effective in
general. However, our logical OR operation is not strong enough
to remove unwanted structures. Some noisy patterns that exist in
either scale can be preserved in the resultant vessel map. This is
the weakness of the proposed work. One way to remove the noisy
patterns is to employ some post-processing procedures based on
their geometric features. Another aspect to be improved for the
MF-FDOG is the handling of branching points and the connectivity
of vessels. If isolated vessels can be connected to the correct
object(s), sensitivity and accuracy will be further improved. We
will further investigate these aspects in our future work.
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