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ABSTRACT

RNA structural motifs are recurrent structural elements occurring in RNAmolecules. RNA structural motif recognition aims to find
RNA substructures that are similar to a query motif, and it is important for RNA structure analysis and RNA function prediction. In
view of this, we propose a newmethod known as RNA Structural Motif Recognition based on Least-Squares distance (LS-RSMR) to
effectively recognize RNA structural motifs. A test set consisting of five types of RNA structural motifs occurring in Escherichia coli
ribosomal RNA is compiled by us. Experiments are conducted for recognizing these five types of motifs. The experimental results
fully reveal the superiority of the proposed LS-RSMR compared with four other state-of-the-art methods.
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INTRODUCTION

LongnoncodingRNA(ncRNA),whichconsistsof>200ntand
has little or no protein-coding capability, is a remarkable class
of RNAs. They are important in various biological processes
(Dinger et al. 2008; Guttman et al. 2009, 2011; Mattick et al.
2009; Pang et al. 2009). In their tertiary structures, some of
the nucleotides will form special substructures, which have
consensus structural patterns and occur repetitively in RNA
molecules. These substructures are called RNA structuralmo-
tifs. They are building blocks of different RNA architectures
andplayan important role inbinding proteins and consolidat-
ing RNA tertiary structures (Moore 1999; Leontis et al. 2002;
François et al. 2005; Hendrix et al. 2005; Leontis et al. 2006).
Many types of RNA structural motifs have been identified:

tetraloop (Woese et al. 1990), sarcin/ricin loop (Szewczaket al.
1993), kink-turn (Klein et al. 2001), π-turn (Wadley and Pyle
2004), andC-loop (Leontis andWesthof 2003), to name a few.
Recently, several new types of motifs have been identified: G-
ribo (Steinberg andBoutorine 2007), UA_handle (Jaeger et al.
2008), and A-wedge (Gagnon and Steinberg 2010). Certain
special types of RNA structuralmotifs are also regarded as ter-
tiary interactions, such as A-minor motif (Nissen et al. 2001),
ribose zipper (Cate et al. 1996), and kissing hairpin (Chang
and Tinoco 1994).
Using a known RNA motif as the query, RNA structural

motif recognition aims to find all of its occurrences in an

RNAmolecule (i.e., the search space). There are two prevalent
ways to search for RNA structural motifs. The first class of
methods is to find motifs based on their geometric features.
NASSAM (Harrison et al. 2003) represents RNA motifs and
the search spaceby graphswhich are constructedusing thedis-
tances between atoms of key nucleotides. Then the Ullman al-
gorithm is used to search for RNA motifs on the graph.
PRIMOS (Duarte et al. 2003), COMPADRES (Wadley and
Pyle 2004), and AMIGOS II (Wadley et al. 2007) characterize
RNA structures andmotifs using two pseudotorsion angles of
the backbones. The distance between two RNA substructures
canbe calculatedbasedon thedistances between their pseudo-
torsion angles. Recently, FASTR3D (Lai et al. 2009), an online
server for RNA 3D structure search, also adopts this represen-
tation scheme as well as the same distance measure. Differ-
ent from these methods, FR3D (Sarver et al. 2008), one of
the prevalent geometry-based methods, integrates geometry
search and symbolic search. When performing geometry
search, FR3D uses the base centers of the nucleotides to repre-
sent RNA structures and motifs. It measures the fitting error
and the orientation error between the query motif and the
candidate to compute their overall discrepancy. Additionally,
Apostolico et al. (2009) and Sargsyan and Lim (2010) use
shape histogram as the signature of RNAmotifs. The distance
between twoRNAsubstructures ismeasuredby the cosine dis-
tance between their shapehistograms.Theother trend inRNA
structural motif recognition is to use an RNA 2D diagram of
base pair isostericity to search for motifs. The rationale of
RNAMotifScan (Zhong et al. 2010) is basedon the assumption
that RNA substructures that have isosteric edges to the query
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motif should have similar shapes. Therefore, motifs that are
not conserved in sequence can also be found.

Despite the great efforts spent in RNA structural motif rec-
ognition, there remain several problems for further investiga-
tion. The first problem is how to find a suitable representation
scheme for RNA structures and query motifs. In geometry-
based methods, RNA substructures are represented by sets
of atoms or pseudoatoms. Most atoms have fixed positions,
and the distances between them will not change dramatically.
However, RNA motifs may have some free bases that are al-
lowed to rotate along the backbone. The movement of these
atoms will bring in local deformation to the query motif. A
suitable representation scheme can remove such kind of
deformation and preserve the invariance within a motif type
to a large extent. Meanwhile, it should have enough discrimi-
natingpower to separate thosepositive instances fromtheneg-
ative ones. The second problem is how to generate candidates.
If we simply compare the querymotif with all RNA fragments
of the same length, the time cost will become unacceptable.
Therefore, a candidate generationmodule that produces a rea-
sonable number of candidates becomes necessary.

In this paper, we propose a new method, namely RNA
StructuralMotif Recognition based on Least-Squares distance
(LS-RSMR), which aims to solve the aforementioned prob-
lems. LS-RSMR divides the process of RNA structural motif
recognition into two steps. First, a moderate-sized set of
candidates is generated. Then, these candidates are filtered
according to their distances to the query motif. Specifically,
for each candidate, LS-RSMR will compute a least-squares
distance value by superimposing the candidate on the query
motif. Those candidates with smaller distances will be regard-
ed as positive instances.

RESULTS

In the experiments of evaluating the performance of the pro-
posed LS-RSMR, we first construct a query set and a test set
using motifs from the HM50S ribosomal RNA (PDB: 1S72)
and the Escherichia coli ribosomal RNA (PDB: 2QBE), re-
spectively. Query motifs are selected from the query set, and
performance is evaluated on the test set. Meanwhile, we also
evaluate four other state-of-the-art methods on the same
data set and compare their performance with that of LS-
RSMR. The experimental results confirm the effectiveness
of our LS-RSMR method.

Query motif set and search space

We have previously constructed a data set which contains six
types (including eight subtypes) of RNA structural motifs in
HM50S ribosomal RNA (Shen et al. 2011). In the current ex-
periments, five types ofmotifs (tetraloop, sarcin/ricin loop, π-
turn, k-turn, and ribose zipper) are selected to construct aque-
ry set.The instances are listed inSupplementalDataSet 1 in the
Supplemental Material. The structure alignment along the

backbone has been performed and shown in Supplemental
Figure S1. The rest of the instances of the same type are aligned
to the firstmotif shownon the list. In the previouswork, when
evaluating a proposed method, researchers usually arbitrarily
chose one of the published motifs as the query. However, for
each method, different query motifs will result in different
performance. In order to perform an impartial comparison,
in our experiments, we select the instance that has the smallest
sum of square distance to the other positive instances as the
query. The distance between twopositive instances is comput-
ed using the least-squares distance introduced inMaterial and
Methods. For each query, one instance is selected from the
query set and used as the query template. The search is con-
ducted only based on the structure of the selected query motif
without any other information of the query set.
We choose another ribosomal RNA,E. coli ribosomal RNA,

as the search space. We construct a test set that contains the
same types of motifs as in 1S72. The sequences of these mo-
tifs are also listed in the Supplemental Material (see Supple-
mental Data Set 2). Their structure alignment is shown in
Supplemental Figure S2. The numbers of motifs in the query
set and test set are shown in Supplemental Table S1.
All the positive instances collected in the query set and test

set are RNA fragments having consensus structural patterns.
The reason is that those fragments having consensus struc-
tural patterns will be considered to be the most important
during a search. Although some nonstandard fragments will
be deemed to be similar to the querymotif by certainmethods
(such as RNAMotifScan), generally they are less important
than the standard ones. In addition, without expertise it is dif-
ficult to determine whether they are of the same type as that of
the query motif. Therefore, those nonstandard fragments are
currently not studied in the query and test sets.

Methods for performance evaluation

In the following experiments, we search for five types of mo-
tifs in 2QBE, and the proposed LS-RSMR is compared with
four state-of-the-art methods: FR3D (Sarver et al. 2008),
shape histogram used by Apostolico et al. (2009), AMIGOS
II (Wadley et al. 2007), and RNAMotifScan (Zhong et al.
2010). The results of FR3D are generated using WebFR3D
(Petrov et al. 2011) with only the geometric search function
used. Its parameterdiscrepancywas set to 0.9, which is the larg-
est discrepancy value accepted by WebFR3D. Consequently,
WebFR3D could return asmany search results as possible and
achieves its best performance. Themethod in Apostolico et al.
(2009) has two parameters to adjust: thresholds for cosine dis-
tance and RMSD. The default values of cosine distance and
RMSDused by the authors are as follows: (0.95, 2 Å) for tetra-
loops, (0.9, 4 Å) for single strand of k-turns, and (0.75, 2 Å)
for π-turns. Based on these default values, we adjusted the
two thresholds to allow themethod to achieve a better perfor-
mance. In our experiments, when searching for tetraloops, k-
turns, and π-turns, thresholds for cosine distance and RMSD
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were set to (0.95, 2Å), (0.85, 2Å), and (0.75, 2Å), respectively.
For the cases of core of sarcin/ricin loops and ribose zip-
pers, the thresholds for cosine distance were both set to 0.9
(RMSD is not considered for the two-loop motifs). When
evaluating RNAMotifScan, the threshold (false positive rate)
was set to one, which is the largest value of the threshold,
so that RNAMotifScan could return the largest number of
search results and achieve its best performance.
Each method ranks candidates and lists them according

to their distances (e.g., discrepancy in FR3D and dLS in LS-
RSMR) to the query motif. We plot the ranked lists in a pos-
itive/negative space (see Supplemental Fig. S3).
Intuitively, the more positive candidates appear at the top

of the output list, the more effective is the method. We can
quantify this using the precision at rank k [Precision(k)] mea-
sure as defined below:

Precision(k)= #of true positives in the first k instances

k
(1)

In order to quantitatively measure their performance, we
adopt the concept of Average Precision (AP) (Zhu 2004;
Manning et al. 2008).
The AP values for the results in our experiments can be

computed using Eq. (2) below:

PrecisionAVG =
∑n

k=1 P(k) × label(k)
# of positive instances in test set

(2)

where n is the number of ranked candidates, k is the rank in
the sequence of candidates, P(k) is the precision at the k-th
candidate, and label(k) is 1 if the k-th candidate is positive
and 0 if the candidate is negative.

Results

Experiments were performed on a Dell Optiplex 760 (Intel
Core2 Duo CPU 3.16 GHz). Results of the five computational
methods on searching five types of RNA structural motifs are
shown in Supplemental Figure S3. AP values are computed
for the five methods and listed in Table 1. The best perfor-
mance is highlighted in bold.
LS-RSMR, FR3D, AMIGOS II, and Apostolico et al. (2009)

are geometry-basedmethods, which accept the coordinates of
the same query motif as inputs. However, RNAMotifScan is
based on extracted isostericity edges of structural patterns,

which is quite different from the other methods. Therefore,
in our experiments, we use the same query motif for the
first four methods and use the query template provided by
RNAMotifScanpackage forRNAMotifScan. If there is no suit-
able query template, a template will be created by us, such as
the case when searching ribose zippers. In some cases (e.g.,
k-turn search), the package of AMIGOS II also provides the
query template. For this case, wewill compute its performance
by using the query motif and the query template, and the best
performance is chosen and compared with other methods.

Tetraloop

The query motif used by LS-RSMR, FR3D, Apostolico et al.
(2009), and AMIGOS II is 9:G90-A93. There is a GNRA tet-
raloop template in RNAMotifScan package, and we use it as
the query for RNAMotifScan.
In this experiment, FR3D achieves the best performance

with its AP value equal to 0.971. Our LS-RSMR method is
second best with an AP value of 0.905. The less satisfactory
performance of LS-RSMR is due to a false positive in the re-
sults of LS-RSMR but that is not found in the output list of
FR3D: B:G1807-A1810 (see Supplemental Fig. S4a). We align
this sequence with the query motif along the backbone (see
Supplemental Fig. S4b). Although it is quite similar to the
query motif, we currently consider it as a negative instance.

Core of sarcin/ricin loop

AMIGOSII canonlysearchmotifs consistingof a single strand.
Therefore, when searching sarcin/ricin loops, only the other
four methods are compared. The query motif for LS-RSMR,
FR3D, and Apostolico et al. (2009) is 0:G225-A227/A212-
A215. The sarcin/ricin loop template in the RNAMotifScan
package is used as the query for RNAMotifScan.
In this experiment, LS-RSMR and FR3D successfully find

all nine sarcin/ricin loops and achieve the best performance.
RNAMotifScan only finds seven loops. Apostolico et al.
(2009) identifies six sarcin/ricin loops with a false positive
among them.

π-turn

When searching π-turns, we only compare four methods,
excepting RNAMotifScan. This is because RNAMotifScan

uses a base pair isostericity diagram as
input. The user should first define iso-
stericity of base pairs in the query motif.
First, π-turns consist of only one strand
without base pairs inside. Second, the
isostericity of base pairs formed between
nucleotides in π-turns and other residues
varies significantly. It is difficult to con-
struct a consensus base pair isostericity
matrix for π-turns. Therefore, only the
other four methods are used to search
π-turns.

TABLE 1. AP values of five computational methods on searching five types of RNA
structural motifs

Motif LS-RSMR FR3D
Apostolico
et al. (2009) AMIGOS II RNAMotifScan

Tetraloop 0.905 0.971 0.750 0.879 0.431
Sarcin/ricin-loop 1 1 0.632 NA 0.859
π-turn 1 0.662 1 0.324 NA
k-turn 1 1 1 0.667 0.833
Ribose zipper 0.914 0.821 0.644 NA 0.001

LS-RSMR
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The query motif used by LS-RSMR, FR3D, Apostolico
et al. (2009), and AMIGOS II is 0:G1873-G1877. LS-RSMR
and Apostolico et al. (2009) successfully find all seven posi-
tive instances with AP values equal to one. FR3D and
AMIGOS II only find five and three of them, respectively.

K-turn

Weuse the characteristic strand to search k-turns so that both
local and composite k-turns will be found. The query motif
used by LS-RSMR, FR3D, Apostolico et al. (2009), and
AMIGOS II is 0:C1146-A1154. The k-turn template in the
AMIGOS II package is also used as the query for AMIGOS
II. The template in RNAMotifScan package is used as the
query for RNAMotifScan.

LS-RSMR, FR3D, and Apostolico et al. (2009) find all three
k-turns with the highest performance. RNAMotifScan only
finds two of them.When using the query motif and the query
template, AMIGOS II achieves the same performance—it
only finds two k-turns in both cases.

Ribose zipper

AMIGOS II cannot be used for searching ribose zipper
because ribose zipper consists of two strands. We compare
the performance of the other four methods. The query motif
used by LS-RSMR, FR3D, and Apostolico et al. (2009) is 0:
A520-A521/0:C637-C638. Because there is no suitable query
template in the RNAMotifScan package, we construct a query
template for RNAMotifScan: iso: AA… CC; edge: SS… SS;
struc: ((…)).

LS-RSMR achieves the best performance with its AP value
equal to 0.914, ∼10% higher than the second best method,
FR3D. RNAMotifScan only returns four positive instances.
Considering that there are 44 ribose
zippers in 2QBE, the performance of
RNAMotifScan is not satisfactory.

Results of the five computational
methods show that LS-RSMR identifies
more positive instances of all five types
of motifs. It achieves a good performance
in most cases, and experimental results
demonstrate the effectiveness of our LS-
RSMR method.

NEW MOTIF DISCOVERY

In the above experiments, we successfully
use LS-RSMR to recognize RNA motifs.
Next, we will show the effectiveness of
LS-RSMR in extracting new motifs.

The RNA motif discovery problem
aims to find new structural patterns oc-
curring in RNA molecules. In order to
find new motifs, we propose a method
based on LS-RSMR. Specifically, we first

generate a set of 2-nucleotide (nt) substructures, each of
which consists of a pair of neighboring nucleotides along
the chain of the RNA molecule. For each substructure, we
add a nucleotide whose distance is smaller than 4 Ǻ to either
nucleotide in the 2-nt substructure. In this way, a set of 3-nt
substructures can be obtained. Using LS-RSMR, we perform
a search using each 3-nt substructure. Setting a stringent
threshold, if there are more than two results returned, we
will keep the corresponding substructure and refer to it as a
3-nt seed. After finding all 3-nt seeds, we can construct a 3-
nt seed set, which may contain potential 3-nt motifs accord-
ing to the definition of RNAmotifs. Based on this set, we can
add a new nucleotide to each of its elements and obtain a 4-nt
substructure set. Similarly, using LS-RSMR, we shall check
each 4-nt substructure and determine whether or not they
are 4-nt seeds.
In this paper, we describe two newly discovered motifs to

show the effectiveness of LS-RSMR in new motif extraction.
The first new motif is a tertiary interaction composed of

three nucleotides. In this motif, two nucleotides (nt 1 and
nt 2 in Fig. 1A) form a consecutive strand, which is part of
a helix. The third (nt 3) has interactions with nt 1 and nt
2. Specifically, the base of nt 3 interacts with the 2′-OH of
nt 1. The 2′-OH of nt 3 interacts with the base and sugar of
nt 2. Six occurrences are shown in Figure 1A–F. This type
of motif brings two RNA strands close to each other and a
groove, where proteins can be embedded, is formed as a con-
sequence. This unique structure allows proteins and RNA to
function together. Figure 1G and H reveal two typical bound
structures of this motif with ribosomal proteins.
The second newmotif is composed of four consecutive nu-

cleotides. The start and the end nucleotide (nt 1 and nt 4 in
Fig. 2A) are part of a helix, and the other two nucleotides (nt

FIGURE 1. The structure of the first new motif. (A) 0:C2318 C2319 U2322; (B) 0:C1403 C1404
U1408; (C) 0:G2365 C2366 A2370; (D) 0:A1242 C1243 A1247; (E) 0:G1849 U1850 A1941; (F) 0:
G1373 C1374 C1431; (G) the structure of E and protein L2; (H) the structure of F and protein L22.
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2 and nt 3) form a bulge, which extrudes outside. The bases of
nt 2 and nt 3 are parallel and participate in a strand of another
helix (see Fig. 2A).
The sequence of this motif is quite conserved. We iden-

tified four occurrences, the structures of which are shown
in Figure 2B–E. The sequence pattern of the four occurrences
can be summarized as ARYC, where R represents purine and
Y represents pyrimidine. We found that the nucleotide at
the start position of the 5′-side is always an adenine and at
the end position it is always a cytosine. The bulge extruding
out contains a purine and a pyrimidine. The shape of this
motif is maintained by the hydrogen bond formed between
the 2′OH of nt 1 and the phosphate group of nt 3 (see Fig.
2A, the hydrogen bond is shown as the yellow dashed line).
Using these two new types of motifs as queries, we con-

ducted two searches across 550 RNA molecules from a non-
redundant list (http://rna.bgsu.edu/rna3dhub/nrlist/release/
1.3/all), which includes ribosomal RNAs, ribozymes, and
riboswitches. Using two stringent cutoff values (d0 = 5 for
the first new motif and d0 = 10 for the second motif), we
identified 45 instances of the first new motif in 17 RNA mol-
ecules and 55 instances of the second motif in 31 RNA mol-
ecules (see Supplemental Table S3, S4). We find that these
instances possess consensus structural patterns, and their
structures are conserved across species and different types
of RNAs.
These newly discovered motifs indicate that LS-RSMR is

effective to find similar substructures according to the given
template from different types of RNAmolecules. It is effective
not only for the known RNA motifs, but also for unknown
substructures.

DISCUSSION

In RNA motif recognition, LS-RSMR, when compared with
FR3D, produces fewer candidates. For example, when search-

ing ribose zipper in 2QBE, LS-RSMR returns 399 candidates,
whereas FR3D returns 12,323 candidates. Meanwhile, in the
candidate set of LS-RSMR, there are more positive instances
than that of FR3D. A positive candidate of ribose zipper, B:
G2607-G2608/U1782-A1783 (see Fig. 3), is found by LS-
RSMR but does not appear in the candidate list of FR3D.
When using FR3D to search RNA motifs, if there is no

continuity information, FR3D will take a much longer time
(>10 min) to generate candidates and return search results.
However, without any continuity constraint, LS-RSMR can
generate candidates within 1 min. In addition, our represen-
tation scheme utilizes information from more atoms of the
motifs than FR3D, which increases the discriminating power.
LS-RSMR has only one parameter: a cutoff threshold d0.

Users caneasily filter candidatesby setting a suitable cutoff val-
ue. Other methods, such as AMIGOS II and Apostolico et al.
(2009), have more than one parameter that needs to be set.
LS-RSMR recognizes RNA motifs based on the degree

of structural similarity. Compared with RNAMotifScan, it
does not require extra knowledge on base pair isostericity.
The query can be a single strand in which there can even be
no base pair. In addition, when searching motifs that have
no consensus base pair isostericity, e.g.,π-turns, ribose zipper,
its effectiveness is further highlighted.
LS-RSMR can search both local and composite motifs. In

the candidate generation process, nucleotides are added to
the partial candidates as long as they have interaction with
the existing nucleotides. It does not matter whether they
are in the same strand of the partial candidates or not.

CONCLUSIONS

In this paper, we have proposed a new method, namely LS-
RSMR, for RNA structural motif recognition. To quantita-
tively measure the performance of LS-RSMR, we apply it
to search for five types of motifs occurring in 2QBE. We
also compare the performance of LS-RSMR with four other
state-of-the-art methods. The experimental results show
the effectiveness of our method.
In addition to its effectiveness, LS-RSMR has three other

advantages. First, only one parameter is required to be adjust-
ed, which makes it easy to use. Second, it is capable of search-
ing both local and composite motifs. Third, to start a search,
it only requires the residue sequence numbers of the query

FIGURE 2. (A) The formation of the second newmotif (0:A339-C342)
in the HM50S subunit. Numbering is from 5′ to 3′. (B) 0:A339-C342;
(C) 0:A1392-C1395; (D) 0:A1448-C1451; (E) 0:A2074-C2077.

FIGURE 3. (A) A standard ribose zipper; (B) a positive candidate found
by LS-RSMR in 2QBE: B:G2607-G2608/U1782-A1783.

LS-RSMR
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nucleotides without any other structural knowledge about
the query fragments.

We have also extended LS-RSMR for the discovery of new
motifs. Currently, we successfully find two newmotifs. These
new discoveries further demonstrate the power of LS-RSMR
in RNA substructure recognition.

In the near future, we plan to extend LS-RSMR to allow us-
ers to set constraints on the relationship between nucleotides
in the generated candidates. The idea of symbolic search,
which has been adopted by FR3D, will also be considered
as our future work.

MATERIALS AND METHODS

RNA structural motif

RNA structural motifs are recurrent substructures occurring in RNA
molecules. They are building blocks of RNA tertiary structures and
are important for RNAs fulfilling their biological functions. Many
types of motifs have been discovered, such as tetraloop, sarcin/ricin
loop, kink-turn, π-turn, and ribose zipper. They are briefly intro-
duced in the Supplemental Material.

Representative structure of an RNA motif

Motifs in the same class share a similar structure. In general, their
structures are similar but tiny differences exist, especially in the po-
sitions of some unrestricted bases. Since RNA motifs are largely in-
variant but slightly different due to local variations, the problem is
how to find a representation scheme to preserve their identity and
at the same time to have adequate discriminating power. Reijmers
et al. (2001) argues that Cartesian coordinates is the most basic rep-
resentation for RNA structures and other representations, such as
torsion angles, can be deduced from it. Duarte et al. (2003) and
Apostolico et al. (2009) use backbones as the representative struc-
tures of RNAmotifs because backbones of motifs are relatively stable
and similar within a class. On the other hand, FR3D (Sarver et al.
2008) utilizes the centroids of the bases as the representation of
RNA structures.

After re-examining the structures of motifs, we found that the at-
oms from the backbone (including the phosphate group and sugar, i.
e., P, OP1, OP2, C1′, C2′, C3′, C4′, C5′, O2′, O3′, O4′, and O5′) and
the centers of the bases form a stable representative structure (see
Fig. 4). Such a representation scheme can balance the impact of
backbone and bases on the structural identity of RNAmotifs to a cer-
tain extent. Since the number of atoms from the backbone is much
larger than the base centers, once a candidate matches the querymo-

tif in their backbones, the difference in the base centers will not sig-
nificantly affect the final matching score. Meanwhile, the positions
of the base centers can help to align the candidate with the querymo-
tif. An only concern of using this representation scheme is that it
may allow fragments that have rotated bases to appear in the results,
such as the instance shown in Supplemental Figure S4.

Least-squares distance between two
representative structures

Similar to the approach adopted by FR3D, RNA structural motif
recognition is partitioned into two phases by using the proposed
LS-RSMR: the candidate generation phase and the candidate filter-
ing phase. In this section, we describe the second phase in which
candidates are filtered based on a least-squares distance measure.
Specifically, we shall first introduce the least-squares distance mea-
sure and the candidate filtering method. The method for candidate
generation will be described in “Candidate generation.”

Suppose we have a set of candidates. The process of candidate
filtering is that, given a query motif, each candidate will be com-
pared with the query. A discrepancy value between each candidate
and the query motif can be computed using a suitable distance mea-
sure. Candidates with smaller distances will be regarded as positive
instances.

Under the representation scheme introduced previously, the RNA
substructures, including query motif and candidates, can be treated
as rigid objects. The distance between them can be measured by
the sum of Euclidean distances between the corresponding atoms
after a suitable linear transformation. The computational details
can be found in the Supplemental Material.

In the problem of RNA structural motif recognition, we assume
that there is no scale change between the two RNA substructures
to be matched. Therefore, the scale factor s in Supplemental Equa-
tion S1 is set to 1, instead of using the solution given by Supple-
mental Equation S2. We can compute a least-squares distance dLS
using Supplemental Equations S1 and S2 between each candidate
and the query motif. Given a threshold d0, candidates whose dLS
values are smaller than d0 will be regarded as positive instances
and listed in ascending order of dLS. How to set d0 will be discussed
at the end of “Candidate generation.”

Least-squares distance is also adopted by FR3D and some protein
alignment methods (McLachlan 1979). We found that compared
with other distance measures, least-squares distance has the best dis-
criminating power in Euclidean space. Therefore, LS-RSMR also
adopts this distance measure for RNA substructure comparison.
Although both LS-RSMR and FR3D use the similar distance mea-
sure, the computed rotation matrices and translation vectors are dif-
ferent. This is because points in the representative structures
constructed by the twomethods are quite different; and consequent-
ly, the transformation parameters are also different. In addition,
FR3D also incorporates an orientation error in addition to the
least-squares fitting error. As a consequence, the search results of
LS-RSMR are different from the results of FR3D.

Candidate generation

Suppose the query motif contains m nucleotides, the first stage of
RNA structural motif recognition is to generate all possible m-nt
RNA fragments in the search space. Specifically, given a search spaceFIGURE 4. (A) A tetraloop; (B) its representative structure.
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that contains n nucleotides, the number of allm-nt fragments will be
n(n− 1),…, (n−m), i.e., O(nm). When n is large, it is inefficient to
retain this many candidates and compute their distances to the que-
ry motif. In view of this, an efficient candidate generation method is
indispensable so that fewer candidates can be produced for filtering
in the next phase. Previously, FR3D proposed a fast and efficient
screening algorithm for determining a reasonable number of candi-
dates. On the other hand, in LS-RSMR, we adopt a different, yet also
efficient, candidate generation scheme for this purpose.
Our candidate generation method consists of two steps. The first

step is to reorder the nucleotides in the query motif. The second step
is to generate candidates in the search space according to the new
order of the query motif.

Determine a new order of nucleotides in the query motif

The sequence of nucleotides in the query motif is given by the user.
We should first reorganize the sequence of these nucleotides so that
in the second step candidates can be generated in a more efficient
way. The pseudocode is shown in Supplemental Table S2. The pro-
cess of reordering the query motif is as follows. Suppose the query
motif contains m nucleotides. We first construct a distance matrix
D = [dij]i,j=1,…,m. Each entry of D, dij, is the smallest distance be-
tween atoms in nucleotides i and j. Next, we will construct two
lists. One of them is Seqnew = {n′i}i=1,...,m, which contains the new
order of nucleotides in the query. The other is ClosestPairs =
{(n′i, n′j)} j=2,...,m;i,j. (n′i, n′j) means n′i is the closest nucleotide to n′j
in the first j− 1 nucleotides of Seqnew.
Suppose the given sequence of a query motif is Seqold = {n1,n2,

…, nm}. First, we set Seqnew = {n′1 = n1}. Then, we set Seqremain =
{n1,n2,…, nm}\Seqnew, where ‘\’ means the exclusion of members
of Seqnew from {n1,n2,…, nm}. For each residue from Seqremain, we
can always find a nucleotide ns, which has the smallest minimum
distance to one of the members in Seqnew. Suppose n

′
i is the nucle-

otide closest to ns in Seqnew, then we set n′k+1 = ns and Seqremain =
Seqremain\ns, and (n′i, n′k+1) will be added to ClosestPairs. This pro-
cess is repeated until Seqnew contains all m nucleotides.

Construct candidates

Based on the two lists: Seqnew = {n′1, n′2, . . . , n′m}, and ClosestPairs
= (n′i, n′j)} j=2,...,m;i,j, we can now construct the candidates.
First, we select any one of the nucleotides in the search space and

denote it by c1. Now a partial candidate containing only one nucle-
otide has been created. Next, we should find the second nucleotide
c2 such that {c1,c2} is similar to {n′1, n′2} in Seqnew. The similarity be-
tween {c1,c2} and {n′1, n′2} can be measured by Supplemental
Equation S1. If the distance between {c1,c2} and {n′1, n′2} is smaller
than a threshold d2, then c2 will be kept and {c1,c2} forms a new
partial candidate.
The naïve way to choose c2 from the search space is to check all the

nucleotides in the search space and see whether its combination with
c1 satisfies the similarity constraint. However, this is time consuming
considering that there are thousands of nucleotides in the search
space. When observing the first two nucleotides in Seqnew, it can
be found that n′1 is the closest nucleotide to n

′
2. Therefore, c1 should

also be close to c2 if {c1,c2} and {n′1, n′2} are similar. This means c1 and
c2 are either neighbors along the chain or they have an interaction. If
c1 and c2 are neighbors along the chain, their smallest distance is <2
Å. If they have an interaction, their distance should be <4 Å. Based

on this observation, when selecting a suitable c2, we only need to
check the neighbors of c1 that are located within a distance of 4 Å
(in practice, we relax this distance constraint to 10 Å to avoid miss-
ing some nucleotides not in the standard position). This operation
greatly reduces the number of nucleotides for checking. It should be
noted that ourmethod relies on finding a chain of nearest neighbors.
As long as the chain has distances below 10 Å in distinct parts of the
query motif, our method will perform well.
Now suppose we have a partial candidate containing k (k <m)

nucleotides: {c1,c2,…, ck}. We will now add a new residue ck + 1.
Similar to the case of {c1,c2}, we first check ClosestPairs to find
the pair (n′i, n′k+1). (n′i, n′k+1) means n′i is the closest nucleotide to
n′k+1 when considering the first k nucleotides of Seqnew. Then, we
turn to the i-th nucleotide ci in the partial candidate and find all
its neighbors within 10 Å in the search space. By adding each neigh-
bor to {c1,c2,…, ck}, respectively, we can construct several new par-
tial candidates in the form of {c1,c2,…, ck+1}. We then check the
distance dLS between {c1,c2,…, ck+1} and {n′1, n′2, . . . , n′k+1}. If the
dLS value is smaller than the threshold dk + 1, {c1,c2,…, ck+1} will
be regarded as a new partial candidate. When there are m nucleo-
tides in each candidate, this process will stop. By changing c1 to dif-
ferent nucleotides in the search space, a complete candidate set can
be constructed.
In the previous process, there is a threshold dk (k = 2,…,m− 1)

used for filtering partial candidates with k nucleotides. Next we shall
explain the relationship between dk and d0 as well as how to set their
values. Suppose the query motif is {q1,q2,…, qm} (which has been
reordered using the algorithm in Supplemental Table S2). The
least-squares distance dLS of a candidate {c1,c2,…, cm} to the query
is supposed to be smaller than d0. The corresponding rotation ma-
trix and translation vector form nucleotides is denoted by R1 and t1,
respectively. When only the first k nucleotides of the query motif
and the candidate are considered, the optimal rotation matrix and
translation vector are denoted by R2 and t2. It is obvious that

∑k

i=1

∑l

j=1

||qij − [R2(cij) + t2]||2

≤
∑k

i=1

∑l

j=1

||qij − [R1(cij) + t1]||2

≤
∑m

i=1

∑l

j=1

||qij − [R1(cij) + t1]||2 ≤ d0

(3)

where qij and cij are the j-th points in qi and ci, and l is the number
of points in qi (ci).
Equation 3 means that, if the least-squares distance of a candidate

is smaller than d0, all its k-nt substructures should also have a least-
squares distance smaller than d0 when compared with the corre-
sponding k-nt subsequence of the query motif. If a k-nt RNA frag-
ment has a least-squares distance larger than d0, all m-nt candidates
starting with it will not be regarded as positive instances in the filter-
ing process. This means that d0 is the upper bound of dk.
In Figure 5, we have plotted the relationship between k and

dLS(k) = d(lk)LS (under the assumption that there are l representative
points in each nucleotide and n is set to lk in Supplemental Equation
S1) based on positive instances of tetraloop, sarcin/ricin loop, π-
turn, k-turn, and ribose zipper in two RNA subunits (PDB: 1S72
and 2QBE). We choose one of the positive instances in each type
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as the query and compute the distances of the other positive instanc-
es to the query. The dashed lines correspond to instances from 1S72
and solid lines for instances from 2QBE. It is obvious that dLS(k) al-
ways increases with k. The largest value of d0 can be estimated as 4m
(m is the number of nucleotides in the query). For motifs with mod-
erate length (ranging from ∼3 to 10 nt), the estimated value is large
enough to include all the positive instances and guarantees the com-
putational efficiency simultaneously. However, for some large mo-
tifs (>10 nt), the estimated value may be a bit high, which may
lead to heavy computation. Instead, for these cases, we suggest using
a value smaller than 4m. The adjustment of d0 will not affect the or-
der of search results but the number of instances shown in the re-
sults. A smaller d0 corresponds to a smaller number of search
results and vice versa. Therefore, when the length of motif is larger
than 10 nt, we suggest that users adopt a smaller value of d0. If the
returned instances are all positive, d0 can be increased until enough
negative instances appear at the end of the list, which means that
most of the positives instances are found.

In Figure 5, sometimes the estimated value of d0 is much larger
than dLS(k), especially when k is small. If we use d0 to filter small par-
tial candidates, most of themwill be kept at the beginning of the can-
didate generation step, which consequently affects the speed of the
method. In order to achieve a higher efficiency, we set the value
of dk as the smaller value between d0 and 6k so that fewer small par-
tial candidates will be kept.

LS-RSMR

Given a query motif and a cutoff threshold d0, LS-RSMR first deter-
mines the new sequence order of the query using the algorithm in
Supplemental Table S2. Then, the algorithm will generate candi-
dates according to this new query motif sequence order. After
that, each candidate will be superimposed on the query motif and
a least-squares distance will be computed using Supplemental

Equation S1. Candidates whose least-squares distance values are
less than d0 will be retained as the positive instances.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article, and codes of
LS-RSMR are available at http://sse.tongji.edu.cn/yingshen/RSMR/
LS_RSMR.html.
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