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ABSTRACT
 
Analysis of two-dimensional textures has many potential 
applications in computer vision. In this paper, we 
investigate the problem of rotation invariant texture 
classification, and propose a novel texture feature extractor, 
namely Monogenic-LBP (M-LBP). M-LBP integrates the 
traditional Local Binary Pattern (LBP) operator with the 
other two rotation invariant measures: the local phase and 
the local surface type computed by the 1st-order and 2nd-
order Riesz transforms, respectively. The classification is 
based on the image’s histogram of M-LBP responses. 
Extensive experiments conducted on the CUReT database 
demonstrate the overall superiority of M-LBP over the other 
state-of-the-art methods evaluated. 

Index Terms— Texture classification, monogenic 
signal, LBP
 

1. INTRODUCTION 

Texture analysis is an active area in the fields of computer 
vision and pattern recognition, and has many potential 
applications [1].  

Early methods for texture classification focus on the 
statistical analysis of texture images. The representative 
methods include the co-occurrence matrix [2] and the 
filtering based approaches [3]. These methods could achieve 
good classification results as long as the training and the test 
samples have identical or similar orientations. Kashyap and 
Khotanzad were among the first researchers to study the 
rotation invariant texture classification using a circular 
autoregressive model [4]. After that, many other models 
were explored, for example, the multiresolution 
autoregressive model [5] and the Gaussian Markov random 
field [6]. In [1], Ojala et al. proposed to use the Local 
Binary Pattern (LBP) histogram for rotation invariant 
texture classification. Varma and Zisserman [7] proposed a 
statistical learning based algorithm, namely Maximal 
Response 8 (MR8), using a group of filter banks, where a 
rotation invariant texton library is build first from a training 
set and then an unknown texture image is classified 

according to its histogram of texton frequencies. Very 
recently, under the same framework, Varma and Zisserman 
[8] proposed a new statistical learning based algorithm, in 
which, instead of responses of filter banks, compact image 
patches were used directly to represent local patterns. In 
addition, scale and affine invariant texture classification is 
another active research topic and also attracts much 
attention recently [9]. 

As one of the effective rotation invariant texture 
classification methods, LBP is widely used since it is simple 
yet powerful. However, LBP tends to oversimplify the local 
image structures. Thus, we want to find some other rotation 
invariant features to supplement LBP in order to improve 
the classification accuracy while preserving its simplicity. 
According to [10], the local phase corresponds to a 
qualitative measure of a local structure (step, peak, etc) and 
it is a robust feature with respect to noise and illumination 
changes. We adopt the monogenic signal theory, which is an 
isotropic 2-D extension of the 1-D analytic signal, to extract 
the local image phase information in a rotation invariant 
way. Besides, we utilize the monogenic curvature tensor to 
extract the local surface type information, which is another 
rotation invariant metric. Then, we combine the uniform 
LBP, the local phase information and the local surface type 
information together as a novel texton feature, namely 
Monogenic-LBP (M-LBP). Experiments are conducted to 
show the efficacy and the efficiency of the M-LBP. 

The rest of this paper is organized as follows. Section 2 
introduces the monogenic signal and the monogenic 
curvature tensor. Section 3 describes the M-LBP based 
texture classification. Section 4 reports the experimental 
results. Conclusions are presented in Section 5. 

2. THE MONOGENIC SIGNAL AND THE 
MONOGENIC CURVATURE TENSOR 

For a 2-D image, the intrinsic dimension expresses the 
number of degrees of freedom necessary to describe the 
local structure [10]. The monogenic signal is an isotropic 2-
D extension of the traditional 1-D analytic signal. It is an 
effective tool to analyze i1D (intrinsic 1 dimension) 2-D 
signals (such as lines and edges) in a rotation invariant 
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manner. It is built upon the 1st-order Riesz transform. In 2D 
case, the spatial representation of the Riesz kernel is 
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For an image f(x), the monogenic signal is defined as the 
combination of f and its Riesz transform 
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where * stands for the convolution. For i1D signals (see Fig. 
1-a for an example), the local orientation can be calculated 
as [10, 11] 
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Moreover, for i1D signal f(x), it can be proved that [11] 
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where h1*f  is actually the partial Hilbert transform of f
along its main orientation  and h1=1/ x is the Hilbert 
transform kernel. Thus, the local phase of the i1D signal f(x)
can be defined analogously to the 1-D analytic signal as 

2 2atan 2 { } { }, , [0, )x yR f R f f (6)

It is easy to see that, by such a definition, the local phase is 
calculated in a rotation invariant way. 
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(a) (b) 
Fig. 1: (a) Illustration for the local orientation of an ideal i1D 
signal; (b) an example of the LOP filter in the frequency 
domain.

The monogenic curvature tensor [11], based on higher 
order Riesz transforms can be used to analyze some specific 
i2D signals. For our needs, we only make use of the even 
part of the monogenic curvature tensor, which is defined as 
[11] 
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It can be seen that Te is composed of 2nd-order Riesz 
transforms. Its determinant is  

2
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 If we embed the image f(x, y) into the Monge patch s(x,
y) = {x, y, f(x, y)}, where s(x, y) is a 2-D surface embedded 
in a 3-D ambient Euclidean space, then the Gaussian 
curvature K of s can partially determine the surface type of s
[12]. Surfaces with K > 0 correspond to elliptic patches 
while K < 0 indicates a hyperbolic patch. According to [11], 
the sign of det(Te) is the same as the sign of K. Thus, the 
sign of det(Te) can reflect the shape type of s embedded 
from the image f and it is a rotation invariant metric. In this 
paper we will use the sign of det(Te) to represent the local 
surface type information. 

It can be seen that the monogenic signal and the related 
results, are build upon some assumptions on the signal 
models. In this paper, we simply suppose that these 
assumptions can be satisfied locally and therefore the results 
stated above are applied directly to the texture images.  

3. MONOGENIC-LBP (M-LBP) 

3.1. M-LBP feature extraction 

In this section, we present a new texton feature, namely 
Monogenic-LBP (M-LBP). The idea is that we want to 
combine the local phase information, the local surface type 
information, and the traditional LBP to improve the 
classification accuracy. Specifically, for LBP, we use the 
“uniform” form, defined as [1] 
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Superscript “riu2” means the use of rotation invariant 
“uniform” patterns that have U value of at most 2; s is the 
sign function; gc corresponds to the gray value of the center 
pixel of the local neighborhood and gp(p = 0,…, P-1)
correspond to the gray values of P equally spaced pixels on 
a circle of radius R.

Instead of using the value of the local phase  directly, 
we quantize it into M discrete levels to get the “phase code” 
as

/ ( / )C M (11)
where x is the operator to return the smallest integer not 
smaller than x. In this paper, we experimentally set M as 5. 
Thus, it is easy to see that C is an integer within 1 ~ 5. 

Similarly, we do not use the exact value of det(Te)
either; instead, we binarize it as

0, det( ) 0
1,

e
C

T
S

else
(12)

By combining C, SC, and LBPriu2 
P,R , we can obtain a new 

3-D texton feature vector ( C, SC, LBPriu2 
P,R ) and we name it as 

Monogenic-LBP (M-LBP). 
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In practice the signals are of finite length. Therefore, 
we need to perform band-pass filtering to the image before 
applying the Riesz transforms to it. With respect to the 
band-pass filter, we use the Laplacian of Poisson (LOP)
filter proposed in [11], whose transfer function in the 
Fourier domain is 

22 2{ }( ) 4 exp( 2 ),LOP u u u u� (13)
where  is used to control the center frequency. An example 
of the LOP filter with  = 3.5 in the Fourier domain is 
shown in Fig. 1-b. In Fig. 2, two texture images and their 
associated C and SC extracted with  = 3.5 are shown. 

(a) (b) (c) 

(d) (e) (f) 
Fig. 2: (a) and (d) are two texture images; (b) is the C

extracted from (a); (c) is the SC extracted from (a); (e) is the C

extracted from (d); (f) is the SC extracted from (d). 

In real applications, a multiresolution analysis can 
usually lead to better results. With our scheme, a 
multiresolution analysis can be accomplished by combining 
the information provided by multiple operators of varying 
(P, R, ). Specifically, we use 3 M-LBP operators, denoted 
by M-LBPi (i=1, 2, 3), in this paper and the parameters are 
experimentally set as (8, 1, 3.5), (16, 3, 7) and (24, 5, 14). 

3.2. Classification method 

A 3-D normalized histogram hi (i=1, 2, 3) can be 
constructed for each image by counting the frequencies of 
textons M-LBPi (i = 1, 2, 3) over the whole image. Then, we 
concatenate h1, h2, and h3 together to form a larger 
histogram h, and regard it as the descriptor of the image. It 
can be seen that the bins of h is of size 540 (5×2×10 + 
5×2×18 + 5×2×26). 

We use the 2 statistic to measure the dissimilarity of 
sample and model histograms. Thus, a test sample T will be 
assigned to the class of model L that minimizes  

2

1
( , ) ( ) / ( )

N

n n n n
n

D T L T L T L (14)

where N is the number of bins, and Tn and Ln are the values 
of the sample and model histogram at the nth bin, 
respectively. With respect to the classifier, we use the 
nearest neighborhood classifier. 

4. EXPERIMENTS AND DISCUSSIONS 

The code of the proposed method can be downloaded at 
http://www4.comp.polyu.edu.hk/~cslzhang/code.htm. We 
conducted experiments on a modified CUReT database [13] 
provided at [14]. It contains 61 textures and each texture has 
92 images obtained under different viewpoints and 
illumination directions. Before feature extraction, all the 
images are converted to gray scale and are normalized to 
have a mean of 0 and a standard deviation of 1.  

We compared the performance of the proposed M-LBP 
method with the other three state-of-the-art rotation 
invariant texture classification methods, MR8 [7], Joint [8], 
and the original LBP [1]. In MR8, 40 textons were clustered 
from each of the 61 texture classes using the training 
samples and thus the texton dictionary was of the size 2440 
(61×40). In Joint, the size of the image patch was selected 
as 7×7, and also 40 textons were clustered from each of the 
61 texture classes. In LBP, we combined the information 
extracted by three operators LBPriu2

8,1 , LBPriu2
16,3 , and LBPriu2

24,5

together. The classification accuracies were obtained with 2

distance and the nearest neighborhood classifier. 
We performed experiments on four different settings to 

simulate four situations: 
1. T46A: The training set for each class was selected by 

taking one from every two adjacent images. Hence, there 
were 2,806 (61×46) models and 2,806 test samples. This 
setting was used to simulate the situation of large and 
comprehensive training set. 

2. T23A: The training set for each class was selected by 
taking one from every four adjacent images. Hence, there 
were 1,403 (61×23) models and 4,209 (61×69) test samples. 
This setting was used to simulate the situation of small but 
comprehensive training set. 

3. T46F: The training set for each class was selected as 
the first 46 images. Hence, there were 2,806 models and 
2,806 test samples. This setting was used to simulate the 
situation of large but less comprehensive training set. 

4. T23F: The training set for each class was selected as 
the first 23 images. Hence, there were 1,403 models and 
4,209 test samples. This setting was used to simulate the 
situation of small and less comprehensive training set. 

The classification accuracies and the feature sizes for 
the four methods are listed in Table 1. In addition, we also 
care about the classification speeds. At the classification 
stage, the histogram of the test image will be built at first 
and then it will be matched to all the models generated from 
the training samples. In Table 2, we list the time for one test 
histogram construction and for one matching at the 
classification stage by each method. All the algorithms were 
implemented with Matlab 7.4 except that a C++ 
implemented kd-tree (encapsulated in a MEX function) was 
used in MR8 and Joint to accelerate the labeling process. 
Experiments were performed on a Dell Inspiron 530s PC 
with Intel 6550 processor and 2GB RAM.  
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Table 1. Classification accuracies (%) and feature sizes 
Histogram

Bins T46A T23A T46F T23F 

LBP 54 95.47 93.09 85.64 78.50 
MR8 2440 97.65 96.15 88.70 77.83 
Joint 2440 97.36 95.37 87.13 78.55 

M-LBP 540 97.86 96.72 89.67 81.21 

Table 2. Time consumption (msec) at the classification stage 
 Histogram construction  One matching 

LBP 87 0.022 
MR8 4960 0.089 
Joint 13173 0.089 

M-LBP 221 0.035 

With Table 1 and Table 2, we evaluate the four 
schemes from three aspects: the classification accuracy, the 
feature size, and the runtime classification speed. First, with 
respect to the classification accuracy, M-LBP outperforms 
all the other 3 approaches under all the 4 experimental 
settings. Especially, it performs significantly better than the 
other ones in “T23F”. By contrast, although MR8 and Joint 
achieves similar performance with M-LBP in “T46A”, they 
perform much worse than M-LBP in “T23F”. This is 
because both MR8 and Joint require a training stage, which 
depends much on the training samples; when the training set 
is small and not comprehensive (as in “T23F”), the 
classification accuracy will drop largely. Thus, this indicates 
that the proposed M-LBP is more suitable for real 
applications where training samples are limited and not 
comprehensive. Second, M-LBP requires a moderate feature 
size, bigger than LBP but much smaller than MR8 and Joint. 
Although the feature size of M-LBP is bigger than LBP, 
considering the gain in the classification accuracy, it is 
deserved. Third, the four schemes have very different 
classification speeds. LBP and M-LBP work much faster 
than MR8 and Joint. In MR8 and Joint, in order to build the 
histogram of the test image, every pixel on the test image 
need to be labeled to one item in the texton dictionary, 
which is quite time consuming. Such a process is not 
required in LBP and M-LBP. Besides, an extra training 
period is needed in MR8 and Joint to build the texton 
dictionary, which is also not required in LBP and M-LBP. 
Thus, in general, the proposed M-LBP has the merits of 
high classification accuracy, small feature size and fast 
classification speed. 

5. CONCLUSION 

We present a novel training free rotation invariant texture 
classification method, namely M-LBP. It combines two 
rotation invariant measures, the local phase and the local 
surface type extracted by the 1st- and 2nd- order Riesz 
transforms, with the traditional uniform LBP operator. 
Experimental results validate that M-LBP can achieve 

higher classification accuracy than the other methods 
evaluated, especially in the cases when the training set is 
small and not comprehensive. Moreover, compared with the 
two state-of-the-art training based methods, MR8 and Joint, 
M-LBP has the advantage of smaller feature size and faster 
classification speed, which makes it a more suitable 
candidate in real applications. 
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