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Abstract. This paper describes a STLTSA-based framework to analyze
and decompose human motion for synthesis. In this work, we mainly
intend to extend a manifold learning method, local tangent space align-
ment, to a spatio–temporal version for manifold analysis and offer an ef-
fective method of estimating the intrinsic dimensionality of motion data.
Based on an assumption that a long sequence of motion is composed
of a number of short motion units, we can decompose a motion into
several basic motion units in a low-dimensional manifold space and ex-
tract motion cycles from the cyclic unit. The generation of new complex
movement using obtained motion units is feasible and promising.
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1 Introduction

When data lies on a low-dimensional manifold, its structure may be highly non-
linear, hence linear dimensionality reduction methods such as principal compo-
nent analysis (PCA) [1] and metric multi-dimensional scaling (MDS) [2] often
fail in finding the nonlinear embeddings. This has motivated extensive efforts
toward developing nonlinear dimensionality reduction methods which is known
as manifold learning. Manifold learning methods can be categorized into two
main groups: global and local techniques. Global techniques attempt to preserve
global properties of the data lying on manifolds [3]. Local techniques attempt to
retain global properties of the data by preserving local properties obtained from
neighborhoods around data points [4, 5].

In general, motion data is of high dimensionality and difficult to understand
and analyze, its intrinsic DOFs, however, are essentially supposed to be quite few
and easy to visualize. Linear methods have been widely used in [6, 7] to reduce
the dimensionality of human motion for motion analysis. Recently, Wang et
al [8] introduce Gaussian process dynamical models to learn nonlinear models of
human motion from high-dimensional motion capture data. Li et al [9] propose
a method to learn a nonlinear low-dimensional manifold for high-dimensional
time series and model the dynamical process in the manifold space.
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In this paper, we aim to extend locality-based manifold learning techniques
to a spatio-temporal version for motion capture data. The proposed method
could significantly reduce the time cost of constructing the similarity graph,
which facilitates to handle the large scale data sets. According to the work [10],
the local tangent space alignment (LTSA) [5] method generally performs best
among the popular manifold learning techniques, it is therefore chosen to test
the spatio-temporal similarity graph. In addition, an effective method is offered
to estimate the intrinsic dimensionality of motion data in this study.

2 Spatio-temporal LTSA

2.1 Spatio-temporal Neighborhood Construction

To estimate local tangent spaces of a manifold, the original LTSA method re-
quires to first construct a similarity neighborhood through selecting nearest
neighbors of each point. The simplest way to construct a similarity neighborhood
is to identify a fixed number k of nearest neighbors per data point according to
spatial distance. Although the k -nearest neighborhood is good at describing lo-
cal structure of data, such neighborhood construction has its own drawbacks to
handle large scale data sets. The construction cost for k -nearest neighborhood
is O(kn2), which is expensive in large scale situations.

However, for time-dependent data such as motion data, the variation of data
in two continuous frames is fairly low. Therefore, the temporal neighborhood
implicitly contains much cue about spatial neighbors. If the temporal distances
is also taken into consideration, the construction cost for k -nearest neighborhood
will be dramatically reduced. Our neighborhood construction strategy is to first
select 2k sequential frames as initial neighbors backward and forward from the
current frame, and then find the k-nearest neighbors to construct a similarity
graph using the spatial distance. For example, taking k = 5, the nearest neigh-
bors of the i-th frame will be found from frames between i−5 and i+5 according
to their spatial distance.

Given n time-dependent data points, the time complexity is O(k2n) if the
k-nearest neighbors of each point are selected in terms of both the spatial and
temporal distance. Since k � n in general, using the spatio-temporal distance
will greatly improve the construction efficiency of the neighborhood in compari-
son with solely using the spatial distance. Meanwhile, as two continuous frames
vary little in motion data, our construction strategy can faithfully describe the
local geometrical structure in data.

2.2 Summary of the Algorithm

Next we briefly describe in Table 1 how to extract low-dimensional coordinates
Y from a set of high-dimensional motion data X with STLTSA.

It is worth that there are two free parameters, k and d, as input in the proposed
method. It has been discussed in [5] that if the parameter k is too small, the
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Table 1. The STLTSA algorithm

Input: the dataset X = {xi}ni=1 where xi ∈ R
m, the number k of nearest neighbors,

and the dimensionality d of the embedded manifold.

1. Construct the spatio-temporal neighborhood represented in the form of a m× k

matrix, Xi = (xj
i ), for each point xi. Column vector xj

i is the j-th nearest neighbor
of xi.
2. Calculate the d largest eigenvectors g1, . . . , gd of the correlation matrix
(Xi − x̄ie

T )T (Xi − x̄ie
T ). e is an all-one column vector, and x̄i represents the

average of the neighborhood of xi: x̄i =
1
k

∑
j x

j
i .

3. Extract the local geometry Gi by setting Gi = [e/
√
k, g1, . . . , gd].

4. Construct the n× n alignment matrix B by locally summing as follows:
B(Ii, Ii)← B(Ii, Ii) + I −GiG

T
i , i = 1, . . . , n with initial B = 0. I is a k × k identity

matrix, Ii denotes the set of indices for the k-nearest neighbors of xi.
5. Compute the d+ 1 smallest eigenvectors of B and pick up the eigenvector matrix
[u2, . . . , ud+1] corresponding to the 2nd to d+ 1st smallest eigenvalues.

Output: the global coordinates Y = [y1, . . . , yn] = [u2, . . . , ud+1]
T .

mapping will not reflect any global properties of data; if k is too large, the
mapping will lose its nonlinear character and behave like traditional PCA as
the entire data set is seen as the local neighborhood. However, the algorithm is
essentially stable over a wide range of values of k. How to determine the intrinsic
dimensionality d is introduced in the following section.

2.3 Intrinsic Dimensionality

It is well known that PCA [1] exploits the number of large singular values of the
covariance matrix of input data to estimate intrinsic dimensionality. Further-
more, a similar estimate of LLE was also proposed by Polito and Perona [11],
where d+1 should be less than or equal to the number of eigenvalues of a kernel
matrix that are close to zero.

Likewise, one could estimate the dimensionality d with the eigengap trick
in spatio-temporal LTSA. The number of eigenvalues of B that are close to
zero gives us an answer that d should be no more than this number. Precisely
speaking, the minimal d is considered as the intrinsic dimensionality if it satisfies
that the eigengap, |λd − λd+1|, between the eigenvalues λd and λd+1 of matrix
B is more than the threshold τ ,

|λd − λd+1| > τ.

Due to the fact that DOFs of human motion are quite few, the intrinsic dimen-
sionality of motion data is clearly very low. Using the walking motion data, we
find that the dimensionality d is supposed to be equal to 3. This agrees with the
fact that there exist exactly three DOFs that describe the rotation of joints in
the motion capture data we use.
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2.4 Dynamic Mapping

In this work, we provide a way of dynamic mapping, which can project new
data points between the low-dimensional manifold space and the original high-
dimensional space. The basic assumption of this mapping is that there exists a
locally linear mapping between the original space and the manifold space, which
is consistent with the derivation of LTSA [5]. Therefore, once xj (yj) and xn+1

(yn+1) lie close enough to each other, the transformation matrix of xj (yj) is
naturally applicable to xn+1 (yn+1). Note that this assumption requires that the
input data must be dense enough to sufficiently cover the whole surface of the
embedded manifold, otherwise the generalization can not perform well.

(a) (b)

Fig. 1. The 2D manifold description of the walking motion with STLTSA. Red stars
denote the mapping results of the input motion data into the 2D manifold space, the
number is the frame index. (a): the normal walking path connected along the frame
order, (b): the simplification of the walking path as a circle plus two curves.

2.5 Analysis

Using the walking motion containing 109 frames of 54-dimensional motion cap-
ture data with three walking cycles as an example, we applied the STLTSA
method to such data and projected them into a 2D manifold space for visual
analysis. Fig. 1 presents the 2D description of the walking motion in this man-
ifold space, where a red star corresponds to an action in the walking motion
sequence and the number is the frame index. The manifold curve in Fig. 1(a) de-
picts a transition path of actions connected along the time order. The transition
path can be considered as the concatenation of three sub-paths: first transferring
from the beginning (No. 1) to the initial action of walking (No. 39); then walking
three cycles(from No. 40 through No. 88) and finally returning to the end (No.
109) close to the beginning. Although the walking trajectory is not completely
identical in each cycle due to the liberty of human motion, the cyclic character-
istic of such motion is still clearly expressed in the manifold space. Thus this
walking path can be simplified and approximately sketched as a circle plus two
curves, as shown in Fig. 1(b).
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3 Motion Decomposition

According to the geometrical analysis of the reduced motion data, it is easy
to deconstruct human motion in the manifold space. Assuming that a complex
human behavior is always composed of several small motion units each of which
represents a simpler behavior, one can decompose a long motion sequence into
some small motion units. Sometimes the low-dimensional manifold curve may not
be continuous and smooth due to the liberty and instability of human motion.
So slight modification of the manifold coordinates is often required for denoising.
In this section, we will put a special emphasis on how effectively decomposing
cyclic motion and how removing noise from the manifold coordinates.

3.1 Decomposition of Cyclic Motion

In particular, the decomposition of a motion sequence M can be formulated as
the sum of different motion units Mui , M =

∑
i Mui . Motion units in acyclic

motion usually have the uncertain type and amount, therefore we will use cyclic
motion as examples to introduce motion decomposition. For a whole cyclic mo-
tion sequence, it generally contains five basic motion units: the preparing unit
(Mp), the initial unit (Mi), the cyclic unit (Mc), the final unit (Mf), the wind-up
unit (Mw). Mc is still divisible as the sum of N cycles: Mc =

∑
Cu = N ∗ Cu,

where Cu denotes a cycle that is a primitive action.
If the manifold curve computed with STLTSA is relatively smooth and con-

tinuous, motion decomposition can be easily completed with the derivative of
this curve. In particular, the preparing unit starts from the beginning through
the position where the first derivative of this curve changes sharply; the initial
unit ends at the first position where the second derivative is zero; the cyclic unit
continues until the last position with the second derivative being zero; the final
unit is over if the manifold coordinates do not change obviously; the remainder
is the wind-up unit. In the real applications, we use the first and second order
difference of manifold coordinates with respect to time instead of the derivative
of the manifold curve,

f ′
y(t) ≈ fy(t+ 1)− fy(t),

f ′′
y (t) ≈ fy(t+ 1)− 2fy(t) + fy(t− 1),

where t is the frame index ranging in [1, n], and fy(t) denotes manifold coordi-
nates Y = {y1, · · · , yn} computed with STLTSA. In this means, the extraction
of a cycle contained in the cyclic unit would be fairly simple. With the first order
difference f ′

y(t) being close 0, we can find the valley and peak in the manifold
curve. Between each pair of peak and valley alternately appearing in the time
order, a point where the second order difference f ′′

y (t) is closest to 0 will be
picked out as a candidate of the margin of a cycle. Generally, the first and third
candidates construct a motion cycle in the cyclic unit. As shown in Fig. 2(b), a
pirouette cycle is automatically extracted in this means.
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3.2 Denoising

Each motion cycle in real applications is just approximately consistent rather
than completely identical due to the randomness and liberty of human action.
Therefore, the cyclic unit may not take on such perfect periodicity in the man-
ifold space. To recover the intrinsic shape of the manifold curve, one has to
remove noise from manifold coordinates through smooth curve fitting. The task
of curve fitting can be completed in terms of the least square method. The noise
in manifold coordinates can be removed through translating noisy points toward
the fitted curve. Noisy manifold coordinates Np(t) are defined as those points
that deviate the fitted curve fc(t): Np(t) = {fy(t) | ‖fc(t)− fy(t)‖ > γ)}, where
γ is a predefined threshold close to 0. The translation distance dt of noisy mani-
fold coordinates can be simply computed through the average deviation distance
of the noise points from the fitted curve, After translation, the noisy manifold
coordinates are changed into

f̃y(ti) =

{
fy(ti)− dt, if fy(ti) ≥ fc(ti);
fy(ti) + dt, if fy(ti) < fc(ti).

(1)

(a) Before translation (b) After translation

Fig. 2. An example of translation about the pirouette data. The reduced manifold
coordinates are marked with red stars and blue curve represents the fitted curve. (a):
before translation, (b): after translation.

Fig. 2 gives an example of translation for denoising. The pirouette data is
tested with STLTSA and the 1D manifold coordinates are displayed with red
stars in this figure. The blue curve represents the fitted curve and the x-axis the
time order. As in Fig. 2(a), some points in these two pirouette cycles obviously
deviate from the fitted manifold curve, arising from the surrounding noise. These
disjointed points are subsequently translated to the proximity of the fitted curve
according to the formula (1). The results after translation are shown in Fig. 2(b),
which reveals better periodic regularity.

4 Experimental Results

Here two examples regarding walking and running are offered to illustrate motion
decomposition in Fig. 3. The 1D manifold coordinates (y-axis) are extracted
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(a) Walking (b) Running

Fig. 3. The periodicity of human walking and running. The middle shows the variation
of 1D manifold coordinates obtained by STLTSA with time (from right to left for visual
consistency). Some postures corresponding to numbered points in the middle are shown
in the top and bottom.

using with STLTSA and are shown with the variation of time (x-axis). The
walking data describes a series of human actions, beginning with the ”attention”
posture, then lifting up his left foot and going forward for 7 steps, and finally
returning the ”attention” posture. These steps actually contain three walking
cycles each of which is composed of two steps. For simplification, only 109 data
points are used in our experiments, where the periodicity of the ”walk” motion is
still quite clear. The whole walking process is decomposed into five basic motion
units as in Fig. 3(a): the preparing unit (frames 1-24), the initial unit (frames 25-
31), the cyclic unit (frames 32-88), the final unit (frames 89-99) and the wind-up
unit (frames 100-109). In this case, the cyclic unit includes three walking cycles
each of which needs two steps respectively with the left and right legs. A walking
cycle Cu starts from frames 39 to 56.

The used running data, composed of 150 frames, are cut off from a long
sequence. Although the input running motion is not a complete process, i.e., it
does not include all five motion units, the periodic regularity of its cyclic unit is
still clear, as shown in Fig. 3(b). The running sequence can be divided into four
basic motion units: the preparing, initial, cyclic, and final units.

If some motion is fully understandable and can be decomposed into several
different motion units, conversely, directly connecting these motion units can also
restore the motion, or even create a new complex motion. For self-connection, a
cycle is repeated directly and arbitrarily during the synthesis. For the connection
of different motion units, it requires a common posture between two units. The
results of motion synthesis are recorded in our supporting video.

5 Conclusion

In this work, we propose the spatio-temporal LTSA (STLTSA) method to an-
alyze and decompose human motion. This method extends the original LTSA
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to handling temporal sequences, where the nearest neighborhood is constructed
through the temporal consistency. In essence, the STLTSA method is also ap-
plicable in behavior classification [12] or motion analysis [13] with video data.
Combining video data with motion capture data could effectively improve the
performance of human motion tracking and recognition.
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