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ABSTRACT

A typical surround-view system consists of four fisheye cam-
eras. By performing an offline calibration that determines
both the intrinsics and extrinsics of the system, surround-view
images can be synthesized at runtime. However, poses of cal-
ibrated cameras sometimes may change. In such a case, if
cameras’ extrinsics are not updated accordingly, observable
geometric misalignment will appear in surround-views. Most
existing solutions to this problem resort to re-calibration,
which is quite cumbersome. Thus, how to correct cameras’
extrinsics in an online manner without using re-calibration
is still an open issue. In this paper, we attempt to propose
a novel solution to this problem and the proposed solution is
referred to as “Online Extrinsics Correction for the Surround-
view system”, OECS for short. We first design a Bi-Camera
error model, measuring the photometric discrepancy between
two corresponding pixels on images captured by two adja-
cent cameras. Then, by minimizing the system’s overall Bi-
Camera error, cameras’ extrinsics can be optimized and the
optimization is conducted within a sparse direct framework.
The efficacy and efficiency of OECS are validated by exper-
iments. Data and source code used in this work are pub-
licly available at https://z619850002.github.io/
OECS_HomePage/.

Index Terms— Online extrinsics correction, sparse direct
method, surround-view system, bird’s-eye view

1. INTRODUCTION

The surround-view system (SVS), which provides a top-down
view to drivers, is currently an integral part of modern vehi-
cles. In addition to provide a broader view to the driver, the
surround-view image generated by the system is also the ba-
sis of multiple computer vision tasks in autonomous driving,
such as parking slot detection [1] and pedestrian detection [2].
With the current offline calibration methods, accurate extrin-
sics can be obtained, which can guarantee that the generated
surround-view images are seamless.
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After the surround-view system is calibrated, cameras are
supposed to be fixed to keep their relative poses unchanged.
However, due to some reasons (collisions, bumps, or tire
pressure changes), cameras’ poses may actually change af-
terwards. If we do not update the representation of extrin-
sics accordingly, there will be observable misalignment in the
synthesized surround-views. Many automobile manufactur-
ers now are looking for online methods to correct the sys-
tem’s extrinsics. Unfortunately, existing studies on cameras’
extrinsics online correction are primarily designed for com-
mon multi-camera systems (such as the binocular system) and
they cannot be readily adapted to the surround-view case. In
this paper, we attempt to solve this problem and proposed a
highly effective and efficient solution, namely “OECS”.

2. RELATED WORK AND OUR CONTRIBUTIONS

The SVS is a special kind of multi-camera system. A multi-
camera system is composed of several cameras and provides
a wider view than the monocular one. For most multi-camera
systems, apart from their intrinsics, their extrinsics are also
need to be calibrated to get the relative poses among member
cameras.

When one or more cameras move after calibration, the ex-
trinsics of the multi-camera system will definitely change and
we need to correct them. Existing online extrinsics correction
schemes for the multi-camera systems roughly fall into two
categories, online re-calibration and online optimization.
Online Re-calibration. In online re-calibration approaches,
original offline calibration information will be abandoned and
extrinsics are re-calibrated based on natural scene features
without using auxiliary tools or special calibration sites. In
[3], Hold et al. proposed a method of online extrinsics cali-
bration for the binocular system. They adopted a conventional
detector to detect the lane and sampled a series of feature
points with a scanning line. By fast fourier transform (FFT)
they measured the distance between lane points and finally,
they solved the cameras’ extrinsics based on lane points. In
[4], Hansen et al.’s approach was based on a sequence of
frames. They resorted to sparse feature matching to improve
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the algorithm’s efficiency and used a sequence of frames to
weaken the effect of noise. The method proposed in [5] relies
on the localization results from a visual odometry, which is
actually a complicated task itself.

Online re-calibration methods are simple and straightfor-
ward. However, prior information inherited from offline cal-
ibration will be totally abandoned in such methods and thus
generally they cannot achieve high calibration accuracy.
Online Optimization. The key idea of online optimization
approaches is to take the offline calibration results as prior
knowledge, and then fine-tunes the cameras’ extrinsics to ob-
tain preciser parameters when cameras move. Ling and Shen
[6] detect feature points and matched them between adjacent
cameras. During optimization, the starting point is the offline
calibration result and the epipolar error is minimized by non-
linear optimization. Knorr et al. [7] established a recursive
optimization algorithm. Relative camera poses are corrected
by the Extended Kalman Filter and the relationship between
the multi-camera system and the ground is re-calculated by
homography estimation. The solution proposed in [8] relies
on two parallel lanes on the flat ground. The relative pose be-
tween the camera system’s coordinate system and the world
coordinate system is obtained through vanishing point deriva-
tion. It’s worth mentioning that in [8] the authors considered
the cameras system as a whole and thus poses among cameras
were not optimized. In [9], Liu et al. studied the online extrin-
sics optimization problem for the surround-view system and
their work is quite relevant to this paper. They proposed two
models, the Ground model and the Ground-Camera model,
and both of them can correct extrinsics by minimizing the
system’s photometric errors of overlapping areas.
Our motivations and contributions. How to correct cam-
eras’ extrinsics of a surround-view system in an online man-
ner is an emerging problem in ADAS. Unfortunately, relevant
studies in this area are quite rare. Most of the existing stud-
ies on online extrinsics correction focus on common multi-
camera systems and they cannot be straightforwardly adapted
to the surround-view case. To our knowledge, Liu et al.’s
work is the only solution specially designed to cope with such
a problem. But its correction accuracy, robustness, and com-
putational complexity are still not satisfactory. To this end,
our paper investigates this practical problem and the contri-
butions are summarized as follows:

• We propose a new error model namely “Bi-Camera er-
ror”, which can measure the photometric discrepancy
between two corresponding pixels pi and pj on two
images, where pi and pj are the projections from the
same physical point pG on the ground plane. Cam-
eras’ extrinsics are embedded in the projection relation-
ships between pG and pi (or pj). Thus, by minimizing
the Bi-Camera errors, optimal extrinsics can be worked
out.

• Based on Bi-Camera error model, an online extrin-

sics correction algorithm for the surround-view system,
namely (Online Extrinsic Correction for the Surround-
view system) (OECS for short), is proposed. In OECS,
cameras’ optimal extrinsics are figured out by itera-
tively minimizing the system’s overall Bi-Camera er-
ror. It needs to be noted that OECS follows a sparse
direct framework, implying that it does not depend on
visual feature points. Hence, OECS requires less on its
working conditions and is quite robust.

• Within the sparse direct framework, a novel pixel selec-
tion strategy is proposed. Using such a selection strat-
egy based on color matching and gradient screening,
noise and unmatched objects between images captured
by adjacent cameras can be eliminated effectively. Bi-
Camera errors are then only computed on the selected
positions. Such a pixel selection scheme can effectively
improve OECS’s speed and robustness.

3. METHOD

In this section, details of OECS are presented. The definition
of Bi-Camera error model will be given first. Then, details
of minimizing the system’s Bi-Camera error are presented.
Finally, we will introduce the pixel selection strategy adopted
by OECS.

3.1. Bi-Camera error

𝜀𝒑𝐺 = 𝑰𝐶𝑖 𝒑𝐶𝑖 − 𝑰𝐶𝑗 𝒑𝐶𝑗 2
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Fig. 1. Illustration of the Bi-Camera error.

Suppose that an SVS is composed of four fisheye cam-
eras, C1, C2, C3 and C4. For a camera Ci, the mapping rela-
tionship between a point pG on the surround-view image and
a corresponding point pCi

on the undistorted image is given
by,

pCi
=

1

ZCi

KCi
TCiGK

−1
G pG (1)

where KCi is the intrinsic matrix of Ci, TCiG is the pose of
camera Ci with respect to the ground coordinate system, and
ZCi

is the depth of pG in Ci’s coordinate system. KG is the
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transformation matrix from the ground coordinate system to
the surround-view coordinate system, which is given by,

KG =


1

dXG
0 0 W

2dXG

0 − 1
dYG

0 H
2dYG

0 0 0 1

 (2)

where (dXG
, dYG

) stands for the size of the physical area on
the ground plane corresponding to each pixel of the surround-
view image, and W and H are the width and height of the
surround-view, respectively. Actually, pG is the projection of
a 3D point PG = [XG, YG, ZG, 1]

T on the ground and they
can be linked viaKG as,

pG =KGPG (3)

So Eq. 1 can be reformulated as,

pCi
=

1

ZCi

KCi
TCiGPG (4)

If pG can be seen by both Ci and Cj , its two projections
pCi

and pCj
on the undistorted images ICi and ICj captured

by Ci and Cj can be obtained using Eq. 1. For pG, we define
its Bi-Camera error term as,

εpG
=

1

2
‖ICi

(
pCi

)
− ICj

(
pCj

)
‖22 (5)

Fig. 1 illustrates the Bi-Camera error term for a single point
pG. For each of the qualified points chosen by the pixel se-
lection strategy, which will be discussed in Sect. 3.3, such
an error term can be built. By summing all the error terms
together, we get the system’s overall Bi-Camera error εB ,

εB =
∑

(i,j)∈A

∑
pG∈N ij

εpG (6)

where A is the set of all adjacent camera pairs and N ij is the
set of qualified points in the common-view region of Ci and
Cj . The four common-view regions are shown in Fig. 2.

Since pCi
and pCj

are imaging points of the same phys-
ical object, εpG

should be equal to zero ideally. Similarly,
if the system’s extrinsics are estimated precisely (and all the
other conditions are ideal), εB should be zero. Thus, in
OECS, εB is taken as the objective to be minimized to find
the optimal extrinsics.

3.2. Optimization

For optimization, the camera pose TCiG is expressed in its
Lie algebra form ξ∧CiG [10] and thus Eq. 5 can be reformu-
lated as,

εpG
=

1

2
‖ICi

(
1

ZCi

KCi exp
(
ξ∧CiG

)
K−1
G pG

)
− ICj

(
1

ZCj

KCj
exp

(
ξ∧CjG

)
K−1
G pG

)
‖22

(7)

𝐈
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Fig. 2. The surround-view image and common-view regions.
There are 4 common-view regions marked on the figure as the
Roman numericals I, II, III and IV.

Thus, for camera Ci, its optimal pose ξ∗CiG is given by,

ξ∗CiG = argmin
ξCiG

∑
(i,j)∈A

∑
pG∈Nij

εpG
(8)

To optimize the objective function Eq. 8, the derivative
relationship between εpG

and ξCiG needs to be determined.
The Jacobian of εpG

to ξCiG can be expressed as,

J i =
∂εpG

∂ξTGCi

(9)

Eq. 9 can be decomposed to four parts with the chain rule,

J i =
∂εpG

∂ICi

· ∂ICi

∂pTCi

·
∂pCi

∂P T
Ci

· ∂PCi

∂ξTCiG

(10)

Now we will discuss these four parts one by one:
(1) ∂εpG

/∂ICi
is the derivative of the error εpG

to pixel
intensities of image ICi . We use δ to denote it,

δ =
∂εpG

∂ICi

= ICi
(pCi

)− ICj
(pCj

) (11)

Obviously, this term is the intensity value difference between
two points on the undistorted fisheye images corresponding to
pG. It’s of large amount of computation for projecting pG and
calculating this difference one by one. Therefore, we use the
difference of corresponding pixels on bird’s-eye view images
to substitute it,

δ = IGCi
(pG)− IGCj

(pG) (12)

where IGCi
and IGCj

are bird’s-eye view images generated
from ICi

and ICj
, respectively.

(2) ∂ICi
/∂pTCi

is the intensity gradient of image ICi
at

the pixel pCi
,

∂ICi

∂pTCi

=
[

∂ICi

∂uCi

∂ICi

∂vCi

]
∆
=
[
∇IuG

Ci
∇IvGCi

]
(13)
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(3) ∂pCi
/∂P T

Ci
is the derivative of a pixel’s 2D coordi-

nate to its 3D position in the camera coordinate. From the
pin-hole camera model, we have

∂pCi

∂P T
Ci

=

 fi
x

ZCi
0 − f

i
xXCi

Z2
Ci

0
fi
y

ZCi
− f

i
yYCi

Z2
Ci

 (14)

where f ix and f iy are focal lengths of Ci. XCi
, YCi

and ZCi

are the coordinate values of PCi
in Ci’s coordinate system,

which can be obtained by,

PCi
= TCiGK

−1
G pG (15)

(4) ∂PCi
/∂ξTCiG is the derivative of the 3D point PCi

to
the camera pose ξCiG,

∂PCi

∂ξTCiG

=
[
I3×3 −P∧Ci

]
(16)

where I is a 3 × 3 identity matrix and P∧Ci
is the 3 × 3 anti-

symmetric matrix generated from PCi .
By merging the four terms in Eqs. 13∼16, we get the final

form of Jacobian J i,

Ji = δ
[
∇IuG

Ci
∇IvGCi

]



fi
x

ZCi
0

0
fi
y

ZCi

−
fi
xXCi
Z2
Ci

−
fi
yYCi
Z2
Ci

−
fi
xXCi

YCi
Z2
Ci

−fi
y −

fi
yY 2

Ci
Z2
Ci

fi
x +

fi
xX2

Ci
Z2
Ci

fi
yXCi

YCi
Z2
Ci

−
fi
xYCi
ZCi

fi
yXCi
ZCi



T

(17)

Once J i is available, Eq. 8 can be iteratively optimized with
proper optimization methods [11, 12, 13, 14].

3.3. Pixel selection

In consideration of the robustness and the computational
speed, OECS follows a sparse direct framework [15]. In other
words, only points that meet certain conditions are selected
and involved in the Bi-Camera error computation.

Take two adjacent cameras Ci and Cj as an example. Pri-
marily, the pixels we select should be in the common-view
region of Ci and Cj , which can be represented as Oij . A
set of pixels N ij will be selected out by the selection strat-
egy and involved in optimization. Every pixel p in N ij must
satisfy the following three criteria:

• p must lie in the common-view region Oij ,

p ∈ Oij (18)

• The color discrepancy between IGCi
(p) and IGCj

(p)
is not allowed to be too large. Let IcGCi

and IcGCj
be

the channel map of IGCi
and IGCj

of channel c, re-
spectively. The color ratio rc (p) is defined as,

rc (p) =
IcGCi

(p)

IcGCj
(p)

(19)

We use the standard deviation of p’s color ratios in dif-
ferent channels as the measurement of its color discrep-
ancy,

Dcolor (p) =

√∑nc

c=1 (rc (p)− rµ (p))
2

nc
(20)

where nc is the number of channels (normally 3) and rµ
is the average of all p’s color ratios. For any p ∈ N ij ,
it must satisfy

Dcolor (p) < Dmean − 2σd (21)

whereDmean is the average color discrepancy of all the
points in Oij and σd is the associated standard devia-
tion.
• p’s intensity gradient modulus Gi (p) should be large

enough,

Gi(p) > Gmean + 2σg (22)

where Gmean is the mean intensity gradient modulus
over Oij and σg is the associated standard deviation.

𝐢𝐭𝐞𝐫 = 𝟎

𝐈

𝐈𝐈

𝐈𝐈𝐈

𝐈𝐕

𝐢𝐭𝐞𝐫 = 𝟏𝟎 𝐢𝐭𝐞𝐫 = 𝟐𝟎 𝐢𝐭𝐞𝐫 = 𝟑𝟎 𝐢𝐭𝐞𝐫 = 𝟓𝟎 𝐢𝐭𝐞𝐫 = 𝟏𝟎𝟎

Fig. 3. The photometric error maps of the surround-view im-
age in different ROIs at various iterations. From the first row
to the last row, they are photometric error maps of the ROI I,
II, III, and IV marked in Fig. 2, respectively. For each col-
umn, it shows error maps obtained after a particular number
of optimization iterations.
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Fig. 4. Comparison of the surround-view images before and after extrinsics correction by OECS in various environments. For
each pair, the upper left image is generated with disturbed extrinsics while the lower left one is the result after optimization.
Enlarged local areas are shown on the right.

4. EXPERIMENTAL RESULTS

4.1. Experiment setup

To validate the performance of OECS, we performed exper-
iments on an electric car equipped with an SVS. OECS was
implemented with standard C++ and tested on a general lap-
top with an Intel (R) Core (TM) i5-7300HQ CPU.

4.2. Qualitative evaluation

Traits of Methods. As we have reviewed in Sect. 2, there are
several studies in the literature that are relevant to our work
in this paper. In order to understand the different character-
istics of these methods more clearly, in Table 1 we compare
them from three aspects: 1) Does it reuse the prior informa-
tion from the offline calibration? 2) Can it be readily used
for the surround-view system? and 3) What kind of features
does it rely on? It can be seen that only Liu et al.’s method
and OECS are applicable to the surround-view system. One
of the significant differences between Liu et al.’s method and
OECS is that the former depends on dense pixels while the
latter relies on sparse pixels, implying that the latter one will
have the potential to be more robust and more efficient.

Table 1. Qualitative comparison with related methods

method prior SVS feature type
Hold et al. [3] × × ground lane

Hansen et al. [4] × × feature point
Schneider et al. [5] × × odometry
Ling and Shen [6]

√
× feature point

Knorr et al. [7]
√

× feature point
Edevschi et al. [8]

√
× feature point

Liu et al. [9]
√ √

dense pixels
OECS

√ √
sparse pixels
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Fig. 5. Photometric errors of frames in SVS videos synthe-
sized from the same four fisheye videos using different ex-
trinsics.

Correction on A Single Image. To qualitatively validate
OECS, we chose a sample and observed how the optimiza-
tion process evolved. Fig. 3 shows the evolutions of Bi-
Camera error maps in the common-view regions of adjacent
cameras during optimization. It can be seen that the geometric
misalignment existing in neighboring bird’s-eye-view images
was gradually eliminated, which qualitatively demonstrates
the effectiveness of OECS.
Robustness. We tested OECS under a variety of different en-
vironmental conditions. The results show that, in most cases,
OECS can accurately correct the camera system’s extrinsics.
It implies that OCES has lower requirements for external en-
vironments, and thus has good usability and strong robust-
ness. Three typical examples are shown in Fig. 4.

4.3. Quantitative evaluation

To the best of our knowledge, Liu et al.’s work is the only
publicly available solution to solve the problem of online
extrinsics correction for the surround-view systems. Thus,
for quantitative evaluation, we compared OECS with the two
models, the Ground Model and the Ground-Camera Model,
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proposed in Liu et al.’s work.
Minimizing Photometric Error. In this experiment, we first
collected 100 groups of images from the SVS. For all groups,
cameras’ poses were changed slightly from the state of initial
offline calibration. For each group, we then tried to optimize
the system’s extrinsics using compared methods. For each
examined approach, its average photometric errors over 100
groups at sampled iterations are summarized in Table 2. Ob-
viously, OECS performs best.

Table 2. Comparison of photometric errors by examined ap-
proaches

Method iter = 0 iter = 10 iter = 20 iter = 50
Ground Model 10762.06 10748.62 10748.78 10748.49

Ground-Camera Model 10762.06 10731.35 10730.60 10671.34
OECS 10762.06 10552.65 10466.46 10345.96

Table 3. Average photometric errors of a video with different
extrinsics

Ground Model G-C Model OECS Non-optimization
12171.24 11382.36 11115.61 11976.49

Long-term Performance. In this experiment, we used dif-
ferent methods to correct the extrinsics by one frame and
then recorded the photometric errors in the following 350
frames. The results are summarized in Fig. 5 and Table
3. From the results, it can be found that both the Ground-
Camera Model and OECS can effectively correct the system’s
extrinsics, making the photometric errors greatly reduced, and
OECS can achieve more accurate correction results. By con-
trast, the Ground Model performs much poorer.
Time Cost. Both OECS and the Ground Model takes only
about 2s to finish the correction, and their speed is tenfold to
the Ground-Camera Model. However, it needs to be noted
that for the task of online extrinsics correction, the Ground
Model is much inferior to OECS.

5. CONCLUSIONS

In this paper, we studied a practical problem, online cor-
rection of cameras’ extrinsics for the surround-view system,
emerging from the field of ADAS, and proposed a solution
namely OECS. With OECS, by minimizing the system’s over-
all Bi-Camera error, cameras’ extrinsics can be optimized.
One eminent feature of the proposed solution is that it fully
exploits the prior information inherited from the offline cali-
bration. Experimental results have corroborated OECS’s su-
periority over the state-of-the-art competitors in this area.

6. ACKNOWLEDGMENT SECTION

This research was funded in part by the National Natural Sci-
ence Foundation of China under grants 61672380, 61973235,

61972285, and 61936014 and in part by the Natural Science
Foundation of Shanghai under grant 19ZR1461300.

7. REFERENCES

[1] L. Zhang, J. Huang, X. Li, and L. Xiong, “Vision-based
parking-slot detection: A dcnn-based approach and a
large-scale benchmark dataset,” IEEE Trans. IP, vol.
27, no. 11, pp. 5350–5364, 2018.

[2] M. Gressmann, G. Palm, and O. Löhlein, “Surround
view pedestrian detection using heterogeneous classifier
cascades,” in ITSC, 2011, pp. 1317–1324.

[3] S. Hold, S. Gormer, A. Kummert, M. Meuter, and
S. Muller-Schneiders, “A novel approach for the on-
line initial calibration of extrinsic parameters for a car-
mounted camera,” in ITSC, 2009, pp. 1–6.

[4] P. Hansen, H. Alismail, P. Rander, and B. Browning,
“Online continuous stereo extrinsic parameter estima-
tion,” in CVPR, 2012, pp. 1059–1066.

[5] S. Schneider, T. Luettel, and H. Wuensche, “Odometry-
based online extrinsic sensor calibration,” in IROS,
2013, pp. 1287–1292.

[6] Y. Ling and S. Shen, “High-precision online mark-
erless stereo extrinsic calibration,” CoRR, vol.
abs/1903.10705, 2019.

[7] M. Knorr, W. Niehsen, and C. Stiller, “Online extrin-
sic multi-camera calibration using ground plane induced
homographies,” in IV, 2013, pp. 236–241.

[8] S. Nedevschi, C. Vancea, T. Marita, and T. Graf, “Online
extrinsic parameters calibration for stereovision systems
used in far-range detection vehicle applications,” ITSC,
vol. 8, no. 4, pp. 651–660, 2007.

[9] X. Liu, L. Zhang, Y. Shen, S. Zhang, and S. Zhao,
“Online camera pose optimization for the surround-view
system,” in ACM MM, 2019, pp. 383–391.

[10] J. E. Dennis and R. B. Schnabel, “The lie algebra of vi-
sual perception,” Journal of Mathematical Psychology,
vol. 3, no. 1, pp. 65–98, 1966.

[11] R. Battiti, “First- and second-order methods for learn-
ing: Between steepest descent and newton’s method,”
Neural Computation, vol. 4, no. 2, pp. 141–166, 1992.

[12] R. W. M. Wedderburn, “Quasi-likelihood func-
tions, generalized linear models, and the gauss-newton
method,” Biometrika, vol. 61, no. 3, pp. 439–447, 1974.

[13] J. Jorge, “The levenberg-marquardt algorithm: Imple-
mentation and theory,” Springer Berlin Heidelberg, vol.
630, pp. 105–116, 1978.

[14] J. E. Dennis and R. B. Schnabel, “Numerical meth-
ods for unconstrained optimization and nonlinear equa-
tions,” Prentice Hall, Inc., 1983.

[15] J. Engel, V. Koltun, and D. Cremers, “Direct sparse
odometry,” IEEE Trans. PAMI, vol. 40, no. 3, pp. 611–
625, 2019.

6


