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ABSTRACT
The surround-view system is an essential component of an

advanced driver assistance system especially when the vehi-

cle runs in tight parking space or on a narrow road. To en-

sure successful maneuvering, a panoramic bird’s-eye image

with no blind spots is necessarily called for. Hence, a typical

surround-view system consists of several cameras mounted

around the vehicle capturing images from a top-down view-

point, and an accurate extrinsic calibration for such system is

prerequisite for providing a seamless surround-view image.

To achieve this goal, this paper presents a novel extrinsic cal-

ibration pipeline which is both easy-to-use and reliable to op-

erate on multiple cameras. Instead of taking the vehicle to a

fixed position in a specific calibration site, a single chessboard

is the only demand. We adopt a novel refinement procedure

that jointly optimizes camera poses in a closed-loop manner.

The effectiveness and efficiency of the proposed pipeline to

calibrate a surround-view camera system has been corrobo-

rated by experiments.

Index Terms— Extrinsic calibration, overlapping field of

view, surround-view camera system, bird’s-eye image

1. INTRODUCTION

The surround-view system (SVS), as part of most advanced

driver assistance systems (ADAS), is now an emerging tech-

nology that allows the driver to see a surround-view bird’s-eye

image around the vehicle [1]. Such a system is particularly es-

sential when the driver maneuvers into a parking slot or on a

narrow road. It typically mounts four fisheye cameras around

a vehicle capturing images from a top-down viewpoint. How-

ever, to seamlessly stitch all captured images, it entails an

accurate calibration of the multi-camera system. If calibra-

tion parameters are not estimated precisely, a false percep-

tion of surroundings will be acquired, which is fatally dan-

gerous in vehicle control. Note that since intrinsic calibration

techniques are now quite mature, each camera is delivered to

its end-user with precisely accurate intrinsic parameters by

quality control. So, instead of intrinsic calibration, the paper

draws focus on extrinsic calibration procedure. Besides, nor-

mally cameras are extrinsically calibrated by a professional
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taking vehicle to a specific calibration site in a automobile 4S
store, which is a challenging and cumbersome task. Hence a

reliable and easy-to-use surround-view camera extrinsic cali-

bration pipeline is our main concern here.

2. RELATEDWORK AND OUR CONTRIBUTIONS

2.1. Interest point-based approach

Since extrinsic calibration techniques are inherently based on

feature extraction, according to which features are used, the

existing methods can be categorized into two approaches: in-

terest point-based approach and pattern-based approach. The

interest point-based approach estimates the camera parame-

ters using the interest points extracted from real scene im-

ages [2, 3, 4, 5]. Heng et al. calibrate the surround-view

camera system using tracked interest points and optimize the

initial parameters by bundle adjustment [2]. Given intrin-

sics known in advance, Carerra et al. propose a feature-

based extrinsic calibration method based on visual SLAM al-

gorithm [6]. However, interest points are hardly tracked to

obtain point correspondences between images from adjacent

cameras because overlapping areas are severely distorted due

to the use of fisheye lenses. So interest point-based approach

is not suited for obtaining an accurate calibration parameters.

2.2. Pattern-based approach

A pattern-based approach estimates camera parameters using

special patterns including corners, circles, or lines. Since a

pattern-based approach uses precisely drawn patterns whose

configurations are known, it is possible to accurately estimate

the camera parameters, which makes it suitable for accurate

calibration for a surround-view camera system. A branch of

pattern-based calibration methods is placing calibration pat-

tern in overlapped field of the cameras [7, 8, 9, 10, 11]. Meth-

ods in [10, 11] use factorization-based method by placing cal-

ibration pattern between adjacent groups of cameras to cal-

ibrate the surround-view camera system. However, no fur-

ther refinement is performed to guarantee high-precision of

calibration parameters, which consequently leads to the ac-

cumulation errors in calibration results. To incorporate op-

timization of calibration parameters, Zhang et al. propose a
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surround-view camera solution designed for embedded sys-

tems, based on a photometric alignment to correct bright-

ness and color mismatch synthesis [12]. But a large cali-

bration site is required, which is inconvenient for end-user

operation at any time. Apart from above methods, meth-

ods in [13, 14, 15] represent non-overlapping pattern-based

approaches: they use range photogrammetry and a simple

reference plane with a repeated pattern to calibrate such a

surround-view system. However, the non-overlapping based

method is not stable because noises will influence the result

of geometric estimation.

2.3. Our motivations and contributions

Through the literature survey, we find that in the field of

surround-view camera calibration we need to continue to de-

vote efforts in the following two aspects. First, accurate ex-

trinsic calibration is prerequisite to the final seamless bird’s-

eye image. Unfortunately, the optimization of camera ex-

trinsic calibration parameters is rarely considered in previous

methods. Besides, the pipeline for extrinsic calibration of a

surround-view camera system needs to be further improved.

In fact, previous extrinsic calibration procedures are a mission

full of inconvenience. Cumbersome steps make them more

formidable than it looks for the driver to operate. Drivers must

take the vehicle to a specific calibration site in an authorized

dealer and stop the vehicle at a fixed point to calibrate. When

the car needs to be re-calibrated due to vibrations of mounted

cameras, such steps are really inconvenient to the end-user.

By far, the latest work that is closely related to our work is one

established in [16], but no further refinement is performed and

the operation pipeline is cumbersome for end-user operation.

In this work, we attempt to fill the aforementioned research

gaps to some extent. Our pipeline is easy-to-use and relies

simply on chessboard placed in the overlapped field between

adjacent cameras. Our major contributions are three-fold:

(1) Our pipeline is easy-to-use and spares lots of trouble

in finding a specific broad calibration site. The set-up con-

figuration is just a chessboard; and no prior information of

the relative position between the vehicle and the chessboard

is necessary.

(2) We adopt a novel refinement approach that jointly op-

timizes camera poses in a closed-loop manner.

(3) In order to get bird’s-eye image, rather than choosing

pixels in undistorted image, no information is lost by direct

mapping from fisheye image to bird’s-eye image.

3. OUR PROPOSED PIPELINE

As illustrated in Fig. 1, four fisheye cameras are mounted on

a vehicle in four directions: in front, under two side mirrors

and on the back side. Each camera has over 180◦ field of view.
Adjacent cameras share some overlapped areas and four fish-

eye cameras together cover the whole surrounding area of the

vehicle. The flowchart of the proposed pipeline is depicted in

Fig. 2. It mainly consists of three parts: (1) pose initializa-

tion and joint optimization of surround-view camera system

(2) calculation of camera-ground relation and (3) mapping ta-

ble formulation from the bird’s-eye image to the original fish-

eye image. The details are given as follows.

FRT

RBTBLT

LFT

camF

camB

camRcamL caL

Fig. 1. Configuration set-up for surround-view camera sys-

tem.

3.1. Pose initialization and joint optimization

3.1.1. Pose initialization for each camera

Relative motion between front and left cameras TLF can be

estimated by epipolar constraint using a chessboard placed

in the common field of view [17]. Similarly, we can get the

relative motion TBL, TRB and TFR. By setting front camera

coordinates as reference coordinates, we can get four camera

poses in front camera coordinates (Table 1).

Table 1. Poses in front camera coordinates

camera pose

camF TFF = I
camL TLF = TLFTFF

camB TBF = TBLTLFTFF

camR TRF = TRBTBLTLFTFF

camF
′

T
′
FF = TFRTRBTBLTLFTFF

Note that by multiplying TFR with TRF , we define a

new front camera pose after a closed-loop transformation

T
′
FF = TFRTRBTBLTLFTFF , which, under ideal condi-

tions, should be equal to TFF . However, due to accumulation

error, T
′
FF �= TFF which can be used to improve the initial

estimation of camera poses.
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Fig. 2. Pipeline of calibration for surround-view camera system.

3.1.2. Joint optimization of surround-view cameras

A graph based [18] joint optimization method is used to op-

timize the pose of each camera. As denoted in Fig. 3, we

triangulate all chessboard corners to get 3D points from four

directions: PFF , PLF , PBF and PRF respectively [19, 20].

Each edge denotes the reprojection error between the origi-

nal 3D point and the reprojected point in the camera. Apart

from TFF , TLF , TBF and TRF , T
′
FF needs to be simulta-

neously optimized. For each point Pj(Xj , Yj , Zj), its image

uij(uij , vij) and the ith camera’s pose ξi, we sum all repro-

jection errors up and build up a least squares minimization

problem:

P ∗, ξ∗ = argmin
P,ξ

1

2

5∑
i=1

Ni∑
j=1

(uij − 1

sij
Ki exp(ξi)Pj) (1)

K denotes camera intrinsics. During optimization, it will ad-

just poses of the four cameras in order to make T
′
FF = TFF ,

and solve for the optimal camera pose: T ∗
FF , T

∗
LF , T

∗
BF and

T ∗
RF . 3D points are also optimized simultaneously.

3.2. Camera-ground relation calculation

After getting the pose of each camera in reference coordi-

nates (front camera coordinates), as long as we know the re-

lation between the front camera and the ground, we can obtain

the relation between the whole surround-view camera system

and the ground. By setting up a ground coordinates, the rela-

tion between the ground and front camera can be calculated

by the coordinates of four points in both coordinate systems,

respectively (seen in Fig. 4).

3.2.1. Ground coordinates set-up

In order to set up ground coordinates, three concurrent lines

orthogonal with one another are required. Thus four points

amF

amR
amL

amB

LOT

BOT

ROT

F O
T

FOT

LFP

BLP RBP

FRP

F LF F FR

L LF

L BL

B BL
B RB

R RB

R FR

F LF F FR

Fig. 3. Graph based joint optimization of surround-view cam-

era system.

are needed:

(1) PO and PY : We set each camera center in its own co-

ordinates as: P = (0, 0, 0, 1). Given camera poses, we get the

camera center for each camera and the whole system as shown

in Table 2. Using all points calculated in Sec. 3.1.2, a ground

plane GF in front camera coordinates can be regressed:

GF : ax+ by + cz + d = 0 (2)

By calculating projection points of Pcenter and PcamF

to the ground plane : PO and PY . We then define Y -axis

pointing from the origin PO to the point PY in ground coor-

dinates (red color in Fig. 4) .
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Fig. 4. Ground coordinates set-up.

Table 2. Camera center and surround-view system center

camera center

camF T−1
FF (0, 0, 0, 1)

T

camL −1
LF (0, 0, 0, 1)

T

camB T−1
BF (0, 0, 0, 1)

T

camR T−1
RF (0, 0, 0, 1)

T

center 1
4 (camF + camL+ camB + camR)

(2) PX : Similarly, X-axis is defined by vector pointing

from PO to PX that is orthogonal to Y -axis (blue color in

Fig. 4). PX must be in the ground plane G. Hence, we can

get PX by solving the following equations:{
(PX − PO)

T (PY − PO) = 0[
a b c d

]
PX = 0

(3)

(3) PZ : Since X , Y and Z axes are orthogonal with one

another, a point PZ in Z-axis can be calculated by the follow-

ing equation:

(PY − PO)× (PX − PO) = (PZ − PO)

⇒ PZ = (PY − PO)(PX − PO) + PO (4)

3.2.2. Camera-ground relation

For points in front camera coordinates PO, PX , PY and PZ ,

we have their coordinates in ground coordinates: PGO, PGX ,

PGY , PGZ by setting the length of corresponding line seg-

ment. Four corresponding points in ground and front camera

coordinates are shown in Table 3.

Then we can calculate transformation matrix from the

ground coordinates to the front camera coordinates TFG by

stacking four points into a matrix:

Table 3. Correspondent points between the ground coordi-

nates and front camera coordinates

axis front camera ground coordinates

O PO PGO: (0,0,0,1)

X PX PGX : (‖PX − PO‖2,0,0,1)
Y PY PGY : (0,‖PY − PO‖2,0,1)
Z PZ PGZ : (0,0,‖PZ − PO‖2,1)

Pc = TFGPg ⇒ TFG = PcP
−1
g (5)

Here, Pc = [PO PX PY PZ ] and Pg =
[PGO PGX PGY PGZ ]. According to each camera pose in

front camera coordinates, we can obtain camera-ground rela-

tion for the whole surround-view camera system: TFG, TLG,

TBG and TRG.

3.3. Fisheye image to bird’s-eye image

3.3.1. Bird’s-eye image to ground coordinates

We define a bird’s-eye image of size W × H and each pixel

has the size of dx×dy. The origin of the ground coordinates is
set in the image center and the origin of the bird’s-eye image

is set in the upper-left of the image (seen in Fig. 5). Thus the

relation between each pixel in bird’s-eye image uG(uG, vG)
and its ground coordinate PG (x, y) can be expressed as:⎧⎪⎪⎨

⎪⎪⎩
uG =

x

dx
+

W

2dx

vG =
−y

dy
+

H

2dy
,

(6)

More concisely, we have the following equation:⎡
⎣uG

vG
1

⎤
⎦ =

⎡
⎣1/dx 0 W/2dx

0 −1/dy H/2dy
0 0 1

⎤
⎦
⎡
⎣xy
1

⎤
⎦ (7)

In the above equation, we omit Z-axis, since all points in

the ground share the same value z = 0.2, which is the depth

of our chessboard. More concisely, denoting the relation as

KG, we have:

uG = KGPG (8)

3.3.2. Fisheye image to bird’s-eye image

Since KG and camera-ground relation TcamG, camG ∈
{FG,LG,BG,RG} are known, we transform each pixel in

bird’s-eye image uG into a point in each camera coordinate

system Pcam:

Pcam = TcamGPG = TcamGK
−1
G uG (9)

Thus a mapping table from bird’s-eye image uG to fish-

eye image ucam can be straightly acquired by pinhole camera
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Fig. 5. Bird’s-eye image and ground coordinates.

model for each camera:

ucam = Kcamf cam
D (TcamGK

−1
G uG) (10)

Where f cam
D is distortion function. By the above equa-

tion, we can transform from a pixel uG in bird’s-eye image

straightly to a pixel ucam in original fisheye-image. No infor-

mation is lost here compared with methods that select pixels

from undistorted image. By different blending techniques,

we can stitch the images from four directions in order to get a

surround-view bird’s-eye image.

4. RESULTS

4.1. Experimental set-up

In our approach, a single chessboard is used. A larger pattern

improves precision of corner detection further the precision of

camera extrinsic calibration. However, a larger one is cumber-

some for the user to carry around. To balance off, we use the

chessboard with 9× 6 squares and each square is 10 centime-

ters in length. Our system consists of four fisheye cameras

mounted at the center of front and rear car windows, and un-

der two side view mirrors. The resolution, field-of-view, and

acquisition frequency of the fisheye camera are 1280× 1080,

190 degrees and 30 frames per second, respectively.

4.2. Quantitative experiment

4.2.1. Reprojection errors before and after refinement of the
initial estimation

Table 4 shows the average reprojection errors of each camera

using initial estimated poses and poses after joint optimiza-

tion. From this table, we can see that the average reprojection

error of all cameras decreases from 0.3392 to 0.3009. Er-

rors are distributed more evenly among cameras after joint

optimization, which account for the small increase in left and

back cameras’ reprojection errors. Reprojection error of right

camera is the largest among all cameras. After refinement, it

declines by a large margin, which demonstrates the effective-

ness of the proposed joint optimization approach.

Table 4. Reprojection errors before and after Refinement

errors front left back right average

before 0.5804 0.0952 0.1135 0.5667 0.3392

after 0.3757 0.3040 0.3667 0.1570 0.3009

4.2.2. Comparison with previous methods

As aforementioned in Sect. 2, previous methods for cali-

brating surround-view camera system can be categorized into

pattern-based approach and interest point-based approach.

Table 5 shows comparison of eight previous methods and our

proposed one from the viewpoint of three aspects: prior in-

formation of pattern position, accuracy and information loss

during bird’s-eye image generation. From the following ta-

ble, we could see that our pipeline is not only easy-to-use, but

also more accurate. In addition, no information is lost during

the whole process (seen in supplementary material).

Table 5. Comparison with other methods

method category accuracy prior info loss info

Heng [3] pattern good × -

Choi [4] interest point good
√

-

Liu [5] interest point fair - -

Hedi [7] pattern fair
√ √

Natro [8] pattern fair × ×
Liu [9] pattern good × √

Zhang [12] pattern good -
√

Zhang [16] pattern fair
√ √

ours pattern good × ×

4.3. Qualitative experiment

Fig. 6 shows poses of the surround-view cameras before and

after joint optimization. In (a), the new front camera (col-

ored in red) defined after a closed-loop transformation de-

viates from the original front camera (colored in blue) by a

large margin, whereas both cameras in (b) almost coincide.

The output of the surround-view bird’s-eye image using our

proposed approach is shown in Fig. 7. Four images collected

from outdoor environment are stitched correctly, which fur-

ther proves that the estimated calibration parameters are pre-

cisely accurate. More results are shown in our supplementary

material.
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Fcam

Fcam

LcamBcam

Rcam
Fcam

Fcam

LcamBcam

Rcam

Fig. 6. Relationship among cameras before/after refinement.

Fig. 7. Result of surround-view bird’s-eye image synthesis.

5. CONCLUSIONS

This paper proposes a novel and practical pipeline that cali-

brates a multi-camera system in a fully easy-to-use manner.

This pipeline is expected to improve the drivers’ experience

by simply using a single chessboard and does not rely on any

prior information of the relative position between the vehicle

and the calibration board. During the whole process, no in-

formation is lost by direct mapping from the fisheye image to

the bird’s-eye image.
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