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ABSTRACT

Modern defogging methods are able to achieve very compa-

rable results whose differences are too subtle for people to

qualitatively judge. On the other hand, existing quantitative

evaluation methods are also not convincing due to a lack of

proper datasets. In this work, we attempt to address these

issues and establish a long-term lacking benchmark dataset,

namely BeDDE (BEnchmark Dataset for Defogging Evalua-

tion), for evaluating the performance of defogging algorithms.

To our knowledge, BeDDE is the first real-world dataset
comprising foggy images with their registered clear coun-
terparts. Using BeDDE, we set up a new criterion for eval-

uating defogging methods where VSI, a full reference image

quality assessment metric, is calculated and averaged on reg-

istered ROIs of all image pairs. The evaluation results of the

proposed criterion correlate well with human judgements. 10

state-of-the-art defogging methods are evaluated as baselines

on BeDDE. BeDDE is available online1.

Index Terms— Benchmark dataset for defogging evalua-

tion, FR-IQA, metric for defogging evaluation

1. INTRODUCTION

Under foggy conditions, image quality is seriously impaired

due to the scattering of atmospheric aerosol particles, leading

to performance degradation of the related vision algorithms

or systems. Consequently, researchers show great enthusi-

asm for defogging and have presented a great number of de-

fogging approaches [1, 2, 3, 4, 5]. However, due to a lack

of benchmark datasets comprising foggy images with their

ground-truth clear versions, how to evaluate the performance

of those methods remains an open issue.

Widely adopted evaluation schemes can be categorized

into three classes. The first class relies on subjective judge-

ments of readers on defogged images. The second class

adopts no reference IQA metrics [6, 7] which are spe-

cially designed for evaluating defogging methods. The third
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class simulates foggy images from clear images according to

Koschmieder’s law [8] and then employs FR-IQA (full refer-

ence image quality assessment) metrics, such as PSNR and

SSIM [9], to evaluate defogging algorithms. However, all

those schemes own their drawbacks, which will be discussed

in Sect. 2.1. In this work, we attempt to address the issue

of evaluating the performance of defogging algorithms objec-

tively and reasonably.

2. RELATED WORK AND OUR CONTRIBUTIONS

2.1. Related work

Considering the concerns of this work, we briefly introduce

several most well-known IQA metrics and then review current

evaluation schemes for defogging.

Recent advances in FR-IQA. The pixel-based metrics,

e.g. MSE and PSNR, correlate poorly with human percep-

tions, and thus human visual system (HVS) based IQA met-

rics were exploited. The most well-known one is the structure

similarity (SSIM) index [9]. It considered that HVS is highly

adapted to extract the structural information from the visual

scene and thus leveraged the luminance, contrast and struc-

tural information to calculate the similarity. Different from

SSIM, Zhang et al. [10] held the view that HVS understands

an image mainly according to its low-level features and pro-

posed two feature similarity indices, FSIM and FSIMc, which

involve the phase congruency and image gradient magnitude

features. In their later work, they replaced the phase congru-

ency features with saliency maps and proposed a new met-

ric named VSI [11]. In other studies, gradients were further

investigated, and related metrics, such as GMSD [12], were

proposed.

Current evaluation schemes for defogging. As afore-

mentioned, there are three classes of evaluation schemes for

defogging. The first class encourages an article to present de-

fogged images or other intermediate outputs (e.g. transmis-

sion maps) generated by different algorithms and resorted to

subjective judgments of readers only. In [2], Fattal provided

a benchmark with 23 foggy images for subjective judgments.

However, those images own similar visibility conditions and



evaluating on them only may lead to a preference to handle

foggy images with certain conditions. Additionally, some de-

fogged images or outputs are too similar for people to judge.

The second class makes use of specially designed no ref-

erence IQA metrics. In [6], Hautière et al. considered that

defogging methods should be able to restore the contrast of

foggy images and proposed three indicators, i.e., e, r, σ, to

describe changes in edges, norms and intensities of images

before and after the restoration. Later, Choi et al. [7] pro-

posed another no reference assessment method, called FADE

(Fog Aware Density Evaluator), based on natural scene statis-

tics (NSS) and fog aware statistical features. However, no

reference IQA is still an open issue and less reliable than FR-

IQA. By contrast, the third class explores FR-IQA metrics to

evaluate defogging methods.

Due to a lack of real-world image pairs, the third class

usually simulated foggy images from clear ones according to

Koschmieder’s law. In [2], Fattal made use of 11 clear images

with depth maps provided by [13] to simulate foggy images

with ground-truth transmission maps and calculated mean

L1 distance between estimated transmission maps and their

ground-truths. More works [14, 3, 15, 4, 5, 16] employed ex-

isting indoor datasets with depth maps, such as NYU2 [17]

and Middlebury datasets[18], to handle the lack of depth in-

formation, which is required in simulation but not easy to ac-

quire in outdoor scenes, and adopted FR-IQA metrics, such

as MSE, PSNR and SSIM to evaluate defogging methods on

pairs of clear images and the restored ones. However, such a

strategy is questionable. First, indoor scenes actually dissat-

isfy the premise on which Koschmieder’s law is established.

Second, there is a certain gap between real foggy images and

simulated ones. Third, different researchers used different im-

ages, making the comparison results less convincing.

To handle issues in exploiting FR-IQA metrics for evalu-

ating defogging methods, there are a few works considering

establishing proper datasets for defogging. Using SiVICTM

software, Tarel et al. constructed two synthetic outdoor

datasets, namely, FRIDA (Foggy Road Image DAtabase) [19]

and FRIDA2 [20], for testing defogging methods. Those

two datasets contain 90 synthetic images of 18 urban road

scenes and 330 synthetic images of 66 diverse scenes, re-

spectively, and provide both homogeneous and heterogeneous

fogs. However, their images are in low resolutions and not

realistic-looking. In [21], Li et al. established a dataset named

RESIDE (REalistic Single-Image DEhazing) which provides

indoor and outdoor images with simulated fogs for training

and testing defogging models. The indoor images also came

from NYU2 and Middlebury datasets, and thus suffered the

same problem as other works did. The outdoor images were

collected from the Internet and their depth maps were esti-

mated from those monocular images. However, depth esti-

mation from a monocular image is highly ill-posed and thus

the acquired depth maps are unreliable, leading to a poor sim-

ulation quality. But inspiringly, they proposed a task-driven

evaluation scheme. In their scheme, state-of-the-art object de-

tection algorithms are used to detect the objects of interests

on defogged images which are generated by different defog-

ging methods from real foggy images and then mean Average

Precisions (mAP) of detection algorithms are calculated as

scores of defogging methods. In [22], Sakaridis et al. added

synthetic fogs to images from Cityscapes [23] and established

a dataset named Foggy Cityscapes. However, the depth infor-

mation in Cityscapes is not complete and thus the quality of

simulated foggy images cannot be guaranteed. Therefore, it

is also improper to evaluate on Foggy Cityscapes.

2.2. Our motivations and contributions

Having investigated the literature, we find that existing studies

for the evaluation of defogging methods have limitations at

least in two respects.

First, in order to effectively evaluate the effect of defog-

ging algorithms, for each foggy image we need to have its cor-

responding clear reference image. In existing datasets of this

field, clear reference images or foggy images are synthesized

rather than collected from the real physical world. In other

words, a real-world benchmark dataset comprising foggy im-

ages with aligned clear references does not exist in the litera-

ture. For this reason, it is difficult for us to faithfully evaluate

the performance of defogging algorithms on the restoration of

real-world foggy images.

Second, there is not a widely accepted criterion for assess-

ing the quality of defogging results. The majority of defog-

ging studies adopt their own test samples and metrics, which

makes the comparisons unfair and less convincing.

In this work, we attempt to fill the aforementioned re-

search gaps and our major contributions are listed as follows.

(1) We overcome the difficulty of collecting real-world

images under different weather conditions and provide a long-

term lacking benchmark dataset, called BeDDE (BEnchmark

Dataset for Defogging Evaluation), for evaluating defogging

algorithms. BeDDE contains 208 pairs of foggy images and

well aligned clear references. Its raw images were collected

from 23 provincial capital cities of China. For each raw im-

age pair, the foggy image and the corresponding clear one

were roughly registered. Due to slight changes in viewpoints

and contents during data collections, all raw image pairs are

aligned and then their common ROIs are delineated by manu-

ally labeled masks. Registered ROIs between foggy images

and their clear references make it possible to explore FR-

IQA metrics to assess the quality of defogging results. To

our knowledge, as a benchmark dataset for evaluating the
performance of defogging algorithms, BeDDE is the first
one whose foggy images and their clear references are all
collected from the real physical world.

(2) It is widely accepted that state-of-the-art FR-IQA

methods are very reliable in predicting the quality of an image

given its high-quality reference. In our case, registered ROIs
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Fig. 1. The clear image and foggy ones with different visibility conditions taken from Chengdu, the capital city of Sichuan

province, China. (a) is the clear image. (b)∼(e) are foggy images whose visibility conditions become worse sequentially.

between foggy images and their clear references are available.

Thus, it is a natural idea to assess the quality of defogging

results by applying an FR-IQA metric on registered ROIs. In-

spired by this motivation, a new criterion to evaluate defog-

ging methods is proposed. In this criterion, a state-of-the-art

FR-IQA metric, namely VSI [11], is adopted. To evaluate a

defogging method, the mVSI (mean score of VSI over ROIs

of all image pairs in BeDDE) is calculated as the score of

this method. For convenience of related studies, scores of 10

state-of-the-art defogging methods are provided as baselines

on BeDDE. The evaluation results by using our VSI-based

criterion correlate well with the human perception.

3. BEDDE: A BENCHMARK DATASET COLLECTED
FROM THE REAL-WORLD

BeDDE is the first dataset containing real-world foggy images

and their corresponding clear references for defogging stud-

ies. In this section, we will present an overview of BeDDE

and the pipeline of establishing it.

3.1. Dataset overview

BeDDE contains 208 image pairs collected from 23 provin-

cial capital cities of China. For each city, one clear image and

several foggy images of the same places are provided. For

each image pair, the foggy image is well aligned to the cor-

responding clear image via a 2-D projective transformation

and a manually labeled mask is provided. This mask is used

to delineate regions with the same contents in those two im-

ages, which we call the ROI of this pair, and will be used to

calculate scores of defogging methods.

Besides clear reference images and masks, another out-

standing merit of BeDDE is its diversity of visibility con-

ditions. To illustrate this merit, several images of a city

(Chengdu) are provided in Fig. 1. In this figure, the leftmost

image is a clear one while the others are foggy ones taken

under different visibility conditions.

3.2. Pipeline of establishing BeDDE

There are four steps, namely, data acquisition, image regis-

tration, data cleaning and mask labeling, in the pipeline of

establishing BeDDE.

Fig. 2. An overlaid image for a badly aligned pair. Badly

aligned edges are highlighted by a red box and a blue box.

Data acquisition. In this step, an image of the same place

was collected at a time between 8:00 to 9:00 in each day of

40 days. Such collections were conducted simultaneously at

34 provincial capitals of China in one year and the representa-

tive scenes of those cities were chosen as the collection sites.

Thanks to the 44 photographers, we acquired 1269 high reso-

lution images eventually.

Image registration. Although images of a city were

taken in the same place, slight changes in viewpoints are in-

evitable. Therefore, for each city, we choose one image as the

reference image, which is in overcast weather and provides a

good visibility, and align all the other images to this image.

If there is no proper reference image for a city, we simply

drop all images of this city. Afterwards, we follow a stan-

dard image registration procedure which is composed of key-

point detection, feature extraction and matching, transforma-

tion matrix estimation, and transformation application. Since

there are only slight changes in the viewpoints, we adopt a

2-D projective matrix as the transformation model which can

be formulated as,

[x, y, 1] = [u, v, 1] · T (1)

where T is a 3×3 transformation matrix, [u, v, 1] and [x, y, 1]
are the homogeneous coordinates of a pixel in images before

and after the registration, respectively.

Data cleaning. In this step, we need to filter out unde-

sired images including other fog-free ones and badly aligned

ones. To better visualize the registration quality, we adopt

an image overlay technique where the gray scale version of

the reference image and that of the foggy image are assigned

to different channels of a black image (zero values in RGB
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Fig. 3. Examples to illustrate the different contents in spite

of a good alignment. (a) and (b) are the clear image and the

foggy one, respectively, in a pair of BeDDE. (c) is the mask

of this pair. (d) is an overlaid image for this pair and the blue

region is the ROI of this pair. The red box highlights the major

differences between (a) and (b).

channels) and thus badly aligned edges become salient. An

overlaid image for a badly aligned pair is displayed in Fig. 2.

As we can see, the registration quality is quite easy to judge

with this technique.

Mask labeling. In spite that images of a city have been

well aligned, there are still contents which can be different in

them, such as vehicles, pedestrians, trees and water. Exam-

ples of such differences can be seen in Fig. 3. To handle this

problem, we manually label a mask to delineate regions with

the same contents between two images in a pair, namely, the

ROI of this pair. In the evaluation phase, we only calculate

the score over ROIs to rank defogging methods.

4. A NEW CRITERION FOR EVALUATING
DEFOGGING RESULTS

The selected metric, VSI, was originally proposed by Zhang

et al. [11] and formulated as,

V SI =

∑
x∈Ω S(x) · V Sm(x)
∑

x∈Ω V Sm(x)
(2)

Here, Ω means the whole spatial domain, and x represents a

point in Ω. S(·) refers to feature maps composed of VS (vi-

sual saliency), GM (gradient modulus) and chrominance fea-

tures. V Sm(·) refers to the maximum map of VS maps of the

distorted image and its reference. Such a formula can be ap-

plied in our case easily, as long as we replace Ω with the ROI

delineated by a mask. Furthermore, we calculate the mVSI,

namely, mean score of VSI over ROIs of all image pairs in

BeDDE, for various defogging methods and rank those meth-

ods according to their scores.

Table 1. Comparison of time costs. Time-CPU represents

the time cost with CPU only and Time-GPU refers to the time

cost with GPU acceleration. ‘-’ means that no implementation

is provided.

Method Time-CPU (s) Time-GPU (s)
FVR [24] 25.48 -

DCP [1] 1.66 -

BayD [25] 77.81 -

CAP [14] 7.90 -

NLD [26] 20.63 -

MSCNN [15] 20.91 11.669

DeN [3] 14.61 -

AOD-Net [4] 3.20 0.047

DCPDN [5] 15.19 0.034

GFN [27] 33.49 0.399

Using BeDDE and mVSI, 10 representative or state-of-

the-art defogging methods were evaluated, including Fast Vis-

ibility Restoration (FVR) [24], Dark Channel Prior (DCP)

[1], Bayesian Defogging (BayD) [25], Color Attenuation

Prior (CAP) [14], Non-Local image Dehazing (NLD) [26],

MSCNN [15], DehazeNet (DeN) [3], AOD-Net [4], DCPDN

[5], GFN [27]. Official implementations for those methods

were used. Furthermore, all parameters were set to default

and pre-trained models for CNN-based methods (the last 5

evaluated methods) came from original authors. The time

costs of them using CPU only and those of 4 CNN-based

methods with GPU acceleration are provided in Table 1. The

mVSI scores of those methods are presented in Table 2 for

quantitative comparisons. Results of two samples selected

from BeDDE are shown in Fig. 4 for qualitative compar-

isons. From those results, several interesting conclusions can

be drawn.

First, non-CNN methods, such as FVR [24] and NLD [26]

demonstrated in Fig. 4, are more likely to over-enhance the

contrast of foggy images and to produce artifacts that seri-

ously degrade the quality of defogged images. By contrast,

CNN-based methods are able to preserve the quality of im-

ages and restore the visibility simultaneously. Therefore, it is

not weird that almost all CNN-based methods outperform the

non-CNN ones on BeDDE.

Second, GFN [27], a CNN-based defogging approach

proposed quite recently, performs worse than the other CNN-

based methods on BeDDE. There are several potential causes.

On one hand, in GFN, three traditional image enhancement

techniques, namely, white balance, contrast enhancement and

gramma correction, are weighted to generate the defogged

image and the weights are learned by CNNs. However, tradi-

tional enhancement techniques are not suitable for defogging,

since the degradation in fog is highly correlated with the depth

of the scene and those techniques cannot handle such correla-

tions. On the other hand, the training set and test set of GFN



Table 2. Quantitative comparisons for 10 representative state-of-the-art defogging methods. Red, green and blue texts highlight

the champion, the runner-up and the second runner-up, respectively. Note that MSCNN, DeN, AOD-Net, DCPDN and GFN

are CNN-based methods.
Method FVR [24] DCP [1] BayD [25] CAP [14] NLD [26]

Score 0.8858 0.9462 0.9079 0.9156 0.8959

Method MSCNN [15] DeN [3] AOD-Net [4] DCPDN [5] GFN [27]

Score 0.9471 0.9522 0.9540 0.9541 0.9389
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Fig. 4. Results of 10 defogging methods on two samples in BeDDE. The VSI score of each defogged image is provided at the

bottom of this image in the form of “method name/VSI score”.



are all simulated from indoor images of NYU2. Therefore,

GFN may perform well on its own test set due to overfitting

but fails to handle real foggy images in BeDDE.

5. CONCLUSION

In this paper, we focus on how to evaluate the performance of

defogging algorithms and established a benchmark dataset,

namely BeDDE, whose images were all collected from the

real physical world. It is the first dataset containing real-world

foggy images and the corresponding clear references in this

field. Furthermore, by exploiting advances in the field of FR-

IQA, we proposed a new criterion for evaluating defogging

methods by calculating VSI scores on registered ROIs. In the

future, we will continuously enlarge BeDDE to include more

real-world samples.
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N. Nešić, X. Wang, and P. Westling, “High-resolution stereo

datasets with subpixel-accurate ground truth,” in Ger. Conf.
Pattern Recog., 2014, pp. 31–42.

[19] J. Tarel, N. Hautiere, A. Cord, D. Gruyer, and H. Halmaoui,

“Improved visibility of road scene images under heterogeneous

fog,” in IEEE Intel. Vehic. Symposium, 2010, pp. 478–485.

[20] J. Tarel, N. Hautiere, L. Caraffa, A. Cord, H. Halmaoui, and

D. Gruyer, “Vision enhancement in homogeneous and hetero-

geneous fog,” IEEE Intell. Transp. Syst. Magazine, vol. 4, no.

2, pp. 6–20, 2012.

[21] B. Li, W. Ren, D. Fu, D. Tao, D. Feng, W. Zeng, and Z. Wang,

“Benchmarking single-image dehazing and beyond,” IEEE
Trans. IP, vol. 28, no. 1, pp. 492–505, 2019.

[22] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic foggy scene

understanding with synthetic data,” Int’l J. Comp. Vis., pp. 1–

20, 2018.

[23] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele, “The

Cityscapes dataset for semantic urban scene understanding,”

in CVPR, 2016, pp. 3213–3223.

[24] J. Tarel and N. Hautiere, “Fast visibility restoration from a

single color or gray level image,” in ICCV, 2009, pp. 2201–

2208.

[25] K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,”

Int’l J. Comp. Vis., vol. 98, no. 3, pp. 263–278, 2012.

[26] D. Berman and S. Avidan, “Non-local image dehazing,” in

CVPR, 2016, pp. 1674–1682.

[27] W. Ren, L. Ma, J. Zhang, J. Pan, X. Cao, W. Liu, and M. Yang,

“Gated fusion network for single image dehazing,” in CVPR,

2018.


