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ABSTRACT 
 
Compared with tristimulus, spectrum contains much more 
information of a color, which can be used in many fields, 
such as disease diagnosis and material recognition. In order 
to get an accurate and stable reconstruction of spectral data 
from a tristimulus input, a method based on locally linear 
approximation is proposed in this paper, namely SR-LLA. 
To test the performance of SR-LLA, we conduct experi-
ments on three Munsell databases and present a comprehen-
sive analysis of its accuracy and stability. We also compare 
the performance of SR-LLA with the other two spectral re-
construction methods based on BP neural network and PCA, 
respectively. Experimental results indicate that SR-LLA 
could outperform other competitors in terms of both accura-
cy and stability for spectral reconstruction. 
 

Index Terms—Spectral reconstruction, Munsell dataset, 
locally linear approximation 
 

1. INTRODUCTION 
 
Traditionally, we use tristimulus values to define or express 
a color, such as CIE-XYZ, due to the limitation of display 
devices. However, the tristimulus system of color loses great 
amount of color information. In contrast, the spectral data 
can store more useful information for color reproduction as 
well as for color specification under different viewing con-
ditions, which is widely used in many fields [1-4].  

So far, there have been quite a few algorithms proposed 
for spectral reconstruction. Usui et al. constructed a five-
layer BP neural network and generated an identity mapping 
of the surface spectral-reflectance data of 1280 Munsell col-
or chips, using a back-propagation learning algorithm [5]. 
Fairman et al. applied PCA to several databases [6-8]. In 
2006, according to the ten hues fitted to Munsell database 
by Cohen [9], Ayala et al. divided the color space into ten 
zones [10]. With three eigenvectors, the principal compo-
nents of the color can be obtained, which can be used to 
produce spectral data. Abed et al. proposed a linear interpo-
lation method to reconstruct color information from the cor-
responding colorimetric values under a given set of viewing 
conditions [11]. To improve the color reproduction accuracy 
of spectral images, Zhang et al. raised two novel interim 

connection spaces [12]. According to the spectral and color-
imetric representing accuracy of Munsell and Natural Sys-
tems chips, these two connection spaces were believed to be 
better than LabPQR and the ICS with two sets of tristimulus 
under two real light sources. 

Actually, the tristimulus color space can be viewed as a 
low dimensional manifold while its corresponding spectral 
data can be regarded as a high dimensional manifold. In the 
literature of manifold analysis, there are already some meth-
ods proposed to establish a mapping between the low and 
the corresponding high dimensional manifolds [14, 15]. In-
spired by these ideas, in this paper, we propose a novel 
method for Spectral Reconstruction based on Locally Linear 
Approximation, namely SR-LLA. Accuracy and stability of 
the proposed SR-LLA are corroborated by the experiments 
conducted on benchmark datasets. 

The remainder of this paper is organized as follows. 
Section 2 presents our proposed SR-LLA spectral recon-
struction algorithm. Section 3 reports the experimental re-
sults while section 4 concludes the paper. 
 

2. SPECTRAL RECONSTRUCTION BASED ON 
LOCALLY LINEAR APPROXIMATION 

 
2.1. Relationship between color spectra and tristimulus 
data 
The color matching functions are the numerical description 
of the chromatic response, which converts the spectral color 
into CIE-XYZ data. These functions are defined as follows,  

𝑋 = 𝑡 ∫ 𝑃(𝜆)𝑥̅𝑑𝜆 
𝑌 = 𝑡 ∫ 𝑃(𝜆)𝑦�𝑑𝜆 
𝑍 = 𝑡 ∫ 𝑃(𝜆)𝑧̅𝑑𝜆 ,

                                 (1) 

where 𝑥, 𝑦�, and 𝑧̅ represent the eye's sensitivity to brightness 
and 𝑃(𝜆) is the spectral data, t is a self-luminous body, such 
as CRT, which is equal to 680 lumens per watt in our exper-
iments. 

For two tristimulus vectors [𝑋1 𝑌1 𝑍1]𝑇  and 
[𝑋2 𝑌2 𝑍2]𝑇 , since  𝑥 , 𝑦� , 𝑧̅  and t are nonnegative con-
stants and maintain the same under the determined illumi-
nant and observer, when the gap between them tends to zero, 
𝑃(𝜆)1 − 𝑃(𝜆)2 also tends to zero. In other words, when two 
tristimulus vectors in the three dimensional space are close 

2029978-1-4799-2341-0/13/$31.00 ©2013 IEEE ICIP 2013



 

enough, the corresponding spectral vectors in high dimen-
sional space are also close. 

For most applications, values are calculated at 10nm 
intervals instead of continuous functions. So Eq. (1) can be 
rewritten as 

�
𝑋
𝑌
𝑍
� = 𝑀𝑃(𝜆),                                (2) 

where M is a combination of 𝑡𝑥, 𝑡𝑦, and 𝑡𝑧 on each wave-
length, and 𝑃(𝜆) is the spectral vector with 31 elements. Eq. 
(2) will be used for calculation in this paper. 

Reconstructing a high dimensional spectral point from 
a tristimulus input is actually an inverse mapping of the col-
or matching functions. However, as the color matching 
function is nonlinear, it is nearly impossible to find a direct 
solution of spectral reconstruction. To this end, we attempt 
to design an efficient and accurate approach, named Spec-
tral Reconstruction based on Locally Linear Approximation, 
SR-LLA for short.   
 
2.2. SR-LLA algorithm  

 
Fig. 1. Pipeline of the proposed spectral reconstruction algorithm 
SR-LLA. 

 
Knowing that the local linearity in the tristimulus space is 
kept in the spectral space, any spectral color can be approx-
imated through weighted linear combination of similar col-
ors. The local weights in the spectral space are the same as 
the ones in the tristimulus space. Based on this idea, we 
propose a novel method for spectral reconstruction based on 
locally linear approximation, namely SR-LLA. Such a 
method is essentially an unsupervised learning method, 
which means that it does not need the training procedure 
before reconstruction. As it is well known that Munsell da-
taset contains more than one thousand colors with both 
spectral and tristimulus data [16], the relationship of nonlin-

ear mapping from tristimulus to the spectral space has been 
embodied in Munsell dataset. In our method, Munsell da-
taset with both spectral and tristimulus data will be used in 
SR-LLA to learn the mapping function. 

The proposed method SR-LLA borrows the basic idea 
from manifold learning methods [14] and is mainly com-
posed of three steps, as illustrated in Fig. 1.  

In the first step, each pixel in the color image with tri-
stimulus values 𝑃𝑖  is considered as a point in the three di-
mensional space, and its k nearest neighbors are picked from 
the Munsell colors in the same space. The number k of the 
neighbors is a free parameter to preset. Usually, more 
neighbors can improve the quality of the reconstruction, 
while adding the computational complexity of the algorithm. 

The second step will find the optimal weights 𝑊𝑖𝑖 of k 
neighbors for best approximating 𝑃𝑖 . To gain the best com-
bination of weights, we define a cost function C(W) as the 
sum of the squared difference between a pixel and its ap-
proximation ∑ 𝑊𝑖𝑖𝑃𝑖𝑖 : 

𝐶(𝑊) = ∑ �𝑃𝑖 − ∑ 𝑊𝑖𝑖𝑃𝑖𝑖 �2𝑖 ,                  (3) 
where the sum of weights should always be equal to 1. Note 
that there could be negative numbers in the group of 𝑊𝑖𝑖. By 
minimizing the cost function 𝐶(𝑊) in Eq. (3), the approxi-
mation error can reach the least. This minimization problem 
can be solved with the least-squares method.  

Given the spectral values of the Munsell colors, the 
corresponding tristimulus is easily computed as discussed in 
Section 2.1. Assuming that the local linearity of colors is 
maintained in different color spaces, the weights 𝑊𝑖𝑖 com-
puted with Eq. (3) in the tristimulus Munsell color space can 
be directly applied to the spectral Munsell color space for 
reproducing the color spectra. Therefore, in the third step of 
the proposed algorithm, color spectra 𝑆𝑖 can be approximat-
ed as  
 𝑆𝑖 = ∑ 𝑊𝑖𝑖𝑆𝑖𝑖 ,𝑘

1                                    (4) 
where 𝑆𝑖𝑖  is one of the nearest neighbors of 𝑆𝑖 in the spectral 
Munsell color space. The neighborhood relationship and the 
weights 𝑊𝑖𝑖  are respectively inherited from the first and 
second steps. The proposed SR-LLA algorithm is briefly 
summarized in Table 1. 
 

Table 1. The spectral reconstruction algorithm SR-LLA 
Input: a color image with tristimulus values 𝑃𝑖 , the 

number k of nearest neighbors and the Munsell 
dataset 

1. select k nearest neighbors from the Munsell 
colors for each pixel in the input space;  

2. calculate the weights 𝑊𝑖𝑖 through minimizing the 
cost function (3); 

3. apply the weights 𝑊𝑖𝑖 to the corresponding 
spectral Munsell colors and compute the color 
spectra for all pixels;  

Output: a spectral color image with color spectra 𝑆𝑖 
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3. EXPERIMENTAL RESULTS 
 

3.1. Experiment data 
Five images are tested in our experiments: Woman, Girl, 
Leaves, Grassland and Tree Bark, as shown in Fig. 2. These 
images and the associated spectral data can be downloaded 
from [17]. Three Munsell database, MATT (spectrofotome-
ter measured), MATT (AOTF measured), Glossy (spectro-
fotometer measured) [9], are used as a reference set to esti-
mate the color spectra of the tested images. CIE 1964 sup-
plementary standard colorimetric observer was employed. 
 

 
Fig. 2. Five input images. 

 
Tristimulus values in CIE-XYZ space are respectively 

employed for spectral reconstruction. For Munsell dataset, 
the spectral and tristimulus values are known and can be 
downloaded from the website [18]. We used the 31 dimen-
sion spectral data which ranged from 400nm to 700nm and 
had an interval of 10nm. The three dimension values, both 
XYZ and Lab, are calculated with different illuminant. 

The SR-LLA algorithm and other two algorithms for 
comparison were employed for reconstructing the spectral 
data of five tested images.  

The reconstruction error can be defined as the average 
of the absolute errors between all real and reconstructed 
color spectra on each pixel,  

𝐸𝑖𝑖 =  
�𝑂𝑖𝑗−𝑅𝑖𝑗�

𝐷
,                                    (5) 

where 𝐸𝑖𝑖  stands for the error on the pixel of row i and col-
umn j, and O and R means the original spectra and recon-
structed spectra. D denotes the dimension of the spectra. A 
smaller error stands for a better reconstruction. 
 
3.2. Database comparison 
Table 2 shows the statistical results of the spectral recon-
struction in three Munsell datasets. The color coordinates 
were calculated with CIE64 Observer and CIE Illuminant 
D65. The number of neighbors k was set as 200. 

From Table 2 we can find that the reconstruction with 
MATT (spectrofotometer measured), which has 1269 spec-
imens, was almost the same with the one with MATT 
(AOTF measured), which has 1250 specimens, in both spec-
tral space and CIE-Lab space. But with 1600 specimens of 
Glossy (spectrofotometer measured), the reconstruction was 
not as good as the former two.  

Looking for the reason why a large database causes a 
poor result, we checked the distribution of the specimens in 
different databases.  Fig. 3 shows 100 randomly selected 
specimens from MATT (spectrofotometer measured) and 
Glossy databases. It’s not hard to find that the color distribu-

tion was not even in Glossy database. So in some hues, the 
color distribution is dense, while in others, it is sparse. 
When the vectors around the reconstructed one are too 
sparse, the result will be unsatisfactory. 

 
Table 2. Experimental results in different Munsell databases 

Munsell MATT (3pectrophotometer measured) 1269 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0210  0.0096  0.0064  0.0100  0.0181  
max 0.4724  0.0702  0.1364  0.0640  0.0409  
var. 0.0001  0.0001  0.0001  0.0001  0.0001  
>%3 0.0002  0.0000  0.0000  0.0000  0.0002  
Lab mean 0.0333  0.0250  0.0145  0.0120  0.0226  
Lab var. 0.0010  0.0032  0.0023  0.0025  0.0004  

Munsell MATT (AOTF measured) 1250 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0191  0.0115  0.0071  0.0087  0.0173  
max 0.4737  0.0655  0.1355  0.0617  0.0389  
var. 0.0001  0.0001  0.0001  0.0000  0.0001  
>%3 0.0002  0.0000  0.0000  0.0000  0.0002  
Lab mean 0.0319  0.0236  0.0185  0.0078  0.0316  
Lab var. 0.0014  0.0038  0.0031  0.0008  0.0009  

Munsell Glossy (spectrofotometer measured) 1600 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0467  0.0167  0.0179  0.0338  0.0299  
max 0.5257  0.0675  0.1119  0.1167  0.0700  
var. 0.0007  0.0002  0.0004  0.0002  0.0003  
>%3 0.0002  0.0000  0.0000  0.0000  0.0002  
Lab mean 0.2398  0.0936  0.1792  0.0605  0.2361  
Lab var. 0.0577  0.0567  0.1916  0.0213  0.0093  

a(>%3 is the percentage of specimens with color differences greater than 3 units) 
b(Lab mean and Lab var. stand for mean value and variance calculated in CIE-Lab space) 

 

 
Fig. 3. 100 random specimens in MATT 1269 database (left) and 
Glossy 1600 database (right). 

 
3.3. Illuminants comparison 
Table 3 presents the statistics of spectral reconstruction er-
rors under different CIE Illuminants D65, D75, D50, A and 
F11. For reconstruction, the tristimulus colors of Munsell 
were also calculated in different illuminants respectively. 
The number of neighbors k was set as 200, and the database 
was Munsell MATT 1269. 

Results from D65, D75 and D50 were similar. But the 
ones from Illuminant A have a larger average error and vari-
ance, while the maximum error was not always the largest. 
This shows that the degree of dispersion is larger than the 
others. As for Illuminant F11, the average error is not large 
but the maximum error is usually the largest. However, the 
variance is not much larger than the results of D65, D75 and 
D50, which means the result is relatively centralized. 

Woman Girl Leaves Grassland Tree Bark
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After checking the result carefully, we found that when 
using Illuminant A, the spectral reconstruction errors for 
blue and yellow-green were significantly greater than for 
other colors. However, in the result of D65, the error was 
rather even. So it was not be brought by the database. The 
characteristic of Illuminant A was the stress of warm color, 
so the expression of cold color, like blue, was weakened.  

As for the result of Illuminant F11, the larger error was 
caused by the area of red and yellow-red. This can also be 
explained with the stress of colder area and the weakness of 
warmer area of the illuminant.  

The extreme large errors (the ones have an error larger 
than 3% of the original spectra) are the same in the five re-
sults of different illuminants.  

 
Table 3. Experiment results under different illuminants 

Illuminant D65 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0210  0.0096  0.0064  0.0100  0.0181  
max 0.4724  0.0702  0.1364  0.0640  0.0409  
var. 0.0001  0.0001  0.0001  0.0001  0.0001  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

Illuminant D75 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0220  0.0097  0.0064  0.0101  0.0189  
max 0.4740  0.0694  0.1371  0.0652  0.0430  
var. 0.0001  0.0001  0.0001  0.0001  0.0001  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

Illuminant D50 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0183  0.0092  0.0066  0.0097  0.0162  
max 0.4686  0.0668  0.1304  0.0665  0.0362  
var. 0.0001  0.0001  0.0001  0.0001  0.0001  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

Illuminant A 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0285  0.0341  0.0216  0.0387  0.0244  
max 0.1384  0.0766  0.1004  0.1137  0.0548  
var. 0.0003  0.0003  0.0002  0.0002  0.0002  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

Illuminant F11 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0138  0.0118  0.0086  0.0153  0.0122  
max 0.5655  0.0794  0.1614  0.1281  0.0268  
var. 0.0001  0.0001  0.0001  0.0002  0.0001  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

a(>%3 is the percentage of specimens with color differences greater than 3 units) 
 

3.4. Algorithms comparison 
We also compared the performance of the proposed algo-
rithm SR-LLA with the other two spectral reconstruction 
methods based on BP neural network [5] and PCA trained 
on Munsell MATT 1269 divided into 10 hues [10], respec-
tively. The results are shown in Table 4. 

As a five-layer neural network used for the training 
starts from and ends with spectral data, the half of the five 
layers, a three-layer BP neural network, will be studied in 
this work. The input layer is the tristimulus values of the 
1269 Munsell colors and the output layer is the color spectra. 
The hidden layer is composed of ten nodes. The trained var-
iable of BP neural network was less than 1%. 

The dividing of hue was according to Appendix 1 from 
[10]. The experimental environment remained the same and 
the results are listed in Table 4.  

From Table 4 we can find that the result of SR-LLA 
was better than those of the other two approaches. In terms 
of the mean error, the result of SR-LLA was much smaller 
than the ones of the other two, which shows that the pro-
posed method was the most accurate one. Also, the smaller 
max error and variance of error proved that the data recon-
structed by SR-LLA were more stable than those recon-
structed by using the other two methods.  

 
Table 4. Experiment results from different approaches 

SR-LLA 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0210  0.0096  0.0064  0.0100  0.0181  
max 0.4724  0.0702  0.1364  0.0640  0.0409  
var. 0.0001  0.0001  0.0001  0.0001  0.0001  
>3% 0.0002  0.0000  0.0000  0.0000  0.0002  

Three-layer BP Neural Network 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0241  0.0379  0.0222  0.0306  0.0220  
max 0.4447  0.1999  0.2027  0.3097  0.0973  
var. 0.0003  0.0018  0.0004  0.0034  0.0002  
>3% 0.0002  0.0440  0.0929  0.0006  0.0043  

PCA on Divided Munsell Database 
  Girl Grassland Leaves TreeBart Woman 
mean 0.0890  0.0402  0.0442  0.0820  0.0806  
max 0.6109  0.1489  0.2309  0.2277  0.1716  
var. 0.0025  0.0007  0.0010  0.0011  0.0028  
>3% 0.0001  0.0000  0.0000  0.0000  0.0000  

 
4. DISCUSSIONS AND CONCLUSIONS 

 
In this paper, we proposed a novel color spectral reconstruc-
tion method inspired by the ideas in the manifold learning 
field and it is named as SR-LLA. SR-LLA learns the map-
ping function from the tristimulus space to the high dimen-
sional spectral space based on Munsell database. The exper-
iments show that it is accurate as well as stable. 

The reconstructed result depends on several factors, da-
tabase, illuminant and the number of neighbors. When the 
database is sparse or partially dense, the result will be im-
pacted and has a larger error. But in a dense and uniform 
dataset, the result will be satisfactory. Illuminant will also 
affect the reconstruction. The result obtained under natural 
daylight illuminant like D65 is better than the ones obtained 
by using illuminants like A and F11, which prejudicially 
emphasize on cold or warm colors. Accuracy and stability of 
the proposed SR-LLA algorithm were verified by the exper-
iments conducted on the benchmark datasets.  
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