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ABSTRACT 

 
Recently, ear shape has attracted tremendous interests in 
biometric research due to its richness of feature and ease of 
acquisition. In this paper, we present a novel 3D ear 
identification approach based on the sparse representation 
framework. To this end, at first, we propose a 
template-based ear detection method. By utilizing such a 
method, the extracted ear regions are represented in a 
common standard coordinate system determined by the 
template, which facilitates the following feature extraction 
and classification. For each 3D ear, a feature vector can be 
generated as its representation. With respect to the ear 
identification, we resort to the l1-minimization based sparse 
representation. Experiments conducted on a benchmark 
dataset corroborate the effectiveness and efficacy of the 
proposed approach. The associated Matlab source code and 
the evaluation results have been made online available at 
http://sse.tongji.edu.cn/linzhang/ear/srcear/srcear.htm.   
 

Index Terms—Biometrics, 3D ear recognition, sparse 
representation, Iterative Closest Point 
 

1. INTRODUCTION 
 
Among all the biometric identifiers, ear is a relative new 
member and it has been proved viable for its desirable 
properties such as universality, uniqueness and permanence 
[1, 2]. Besides the traditional 2D ear recognition [2, 3, 4, 5], 
there also exists a technology to acquire ear data by using a 
3D sensor which provides both 2D and 3D data for an ear. 
Compared with 2D data, 3D ear data contains more 
information about ear shape and is not sensitive to 
illumination and occlusion.  

Recently, several researches for 3D ear recognition 
have been conducted. In [6], Chen and Bhanu developed a 
3D ear recognition system. The algorithm they suggested is 
based on a 2-step Iterative Closet Points (ICP) [7] 
framework and all the ear regions are extracted from profile 
images manually. To make their system automatic, they 
presented an ear detection algorithm by using an ear shape 
model in their later work [8], in which the first coarse ICP 
step is performed on two extracted ear helixes and the 
second fine ICP step is further applied on two corresponding 
ear point clouds by setting the result gained from last step as 
initial translation. In 2007, Yan and Bowyer also proposed 

an automatic ear recognition approach by applying a 3D ICP 
algorithm [9]. In their work, they tried to locate the ear pit 
and then used active contour algorithm [10] to extract the 
ear contour. Their recognition process is no different from 
any other ICP based approaches. At the same year, Chen 
and Bhanu improved their work by introducing a Local 
Surface Patch Representation [11]. 3D ear recognition was 
also investigated by Islam and Mian [12]. For ear detection, 
they adapted the Viola-Jones object detection algorithm [13] 
and for feature extraction, they adopted the Local 3D 
Feature (L3DF) scheme proposed in [14]. 

In another aspect, as an effective classification tool [15, 
16], sparse representation has also been introduced to the 3D 
biometrics field. For instance, in [17], Li and Jia proposed a 
3D face recognition approach based on sparse representation 
and promising results were reported. 

From the aforementioned introduction, it can be seen 
that most existing 3D ear or 3D face recognition methods 
are based on ICP. While ICP is a feasible 3D matching 
model for the one-to-one verification, it is not quite 
appropriate for the one-to-many identification case. If there 
are multiple samples for each subject in the gallery set, the 
recognition based on ICP usually would have to match the 
test sample to all the gallery samples. With the number of 
gallery samples rising, the performance of ICP-based 
methods will markedly slow down. Since the task of 
recognition is essentially to find a single individual out of 
the entire dataset, Wright et al. [16] proved that the 
recognition based on sparse representation framework is 
more suitable to solve the multiple samples case efficiently. 
Li and Jia have also shown the feasibility of applying the 
sparse representation framework to 3D face recognition [17]. 
However, to the best of knowledge, so far there is no work 
reported to apply sparse representation for 3D ear 
recognition.  

Based on these considerations, in this paper, we 
propose a novel 3D ear identification approach based on 
sparse representation. Our approach consists of three 
components, ear detection, feature extraction, and 
classification. For ear detection, we propose a template 
based scheme which is robust to ear pose change. For 
feature extraction, we adopt an effective PCA-based 
descriptor proposed in [20]. Our approach takes 3D point 
cloud as input and no extra color image is required. The 
performance of the proposed approach is examined on the 
benchmark dataset and is compared with the ICP based 
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method. Efficacy and efficiency of our approach are 
corroborated by the experimental results. 

The remainder of this paper is organized as follows. 
Section 2 describes our proposed algorithm for ear detection 
and recognition. Section 3 reports the experimental results 
and section 4 concludes the paper.  
 

2. SPARSE REPRESENTATION BASED EAR 
RECOGNITION 

 
In this section, we will present our proposed ear recognition 
approach in detail, which consists of three sub-sections, ear 
detection, ear feature extraction and ear identification. 
 
2.1. Ear detection 

1. Nose tip detection and
sector region generation

3. Edge detection

2. Ear pit detection

4. Align ear pit
and ear pit
template

6. Use translation and
rotation matrix from ICP
result for resampling

5. Further ICP
alignment

7. Resample result

Ear contour 
template

Input 3D side face 
data

 
Fig. 1: Illustration for the proposed ear detection scheme. 

 
In our system for each ear, the input 3D ear data is just a 
640×480 side face range scan with vertices positions 
texcoords combined with a binary image utilized to indicate 
whether a pixel contains a vertex. 
 
2.1.1. Ear pit detection 
The binary image is a mask, each pixel of which indicates 
whether the corresponding pixel in the range scan contains a 
vertex. Similar as [9], to locate the ear pit, we first need to 
locate the nose tip which will greatly narrow the ear pit 
position range in the following process. Identifying the 

location of the nose tip is accomplished in the image space 
of the binary mask. Here, we briefly review this process: 

1. Record the X values along each row at which we first 
encounter a white pixel in the binary image and find 
the mean value Xmean of X values.  

2. Within a 100 pixel range left of Xmean, like step 1, 
record the starting Y values along each row and find 
the mean value Ymean. Within a 60 pixel range above 
and below of the Ymean, the valid point with minimum 
X value is the nose tip (XNoseTip, YNoseTip).  

3. Using the point (XNoseTip, YNoseTip) as the center of a 
circle, we generate a sector region spanning +/- 30 
degree from the horizontal. In this region, we reject 
pixels of which the corresponding vertices have a 
distance larger than 16 cm or smaller than 4 cm to the 
vertex of nose tip.  

Based on the location of the nose tip, we can generate a 
corresponding sector which the ear pit should fall in. We 
then use the Z value in the range scan as the intensity for 
each pixel to generate a range image, and the further 
locating of ear pit is performed in the image space of the 
range image. To this end, we introduce a simple yet 
effective method. We assume that the ear pit should be the 
point of which the Z value is the lowest within a circle range 
like a pit. Following this rule, we pre-generate a random 
sample pattern which consists of 150 points within a 
30-pixel radius circle range. And for each point fall in the 
sector we sample its neighboring points via the 
pre-generated sample pattern. The points with lowest depth 
value in its local neighboring are the candidates of ear pit. 
From these candidates distribution, we found that the true 
ear pit must lie on a cluster which contains several 
candidates. So we remove the isolated candidates with no 
other candidates around, which could be caused by noise or 
hair interference. Then we regard the candidate with lowest 
depth value from the remaining as the ear pit. 
 
2.1.2. Ear contour alignment 
For handling pose change, we adopt the ICP algorithm to 
align each ear contour to an ear contour template. The idea 
is similar to the one suggested in [8]; however, there are 
some differences. At first, we have detected the position of 
ear pits so we could reduce the computational cost of ICP 
contours matching by aligning the ear pits first. Secondly, in 
our case, ICP matching is performed in the 2D image space, 
which is much faster than the one working in the 3D space. 

We built an ear contour template by manually selecting 
corresponding points from the subset of UND-J ear database 
and calculating the average position for each point. The built 
ear contour template is shown in Fig. 1. For each query ear, 
we extract the sector region (see 2.1.1) from the depth image. 
Then we apply a Canny edge detector on the extracted part 
of the depth image and we get the edge map which can be 
viewed as the contour part of a query ear. After that, we first 
align the edge map to the ear contour template by aligning 
the detected ear pit to the ear pit template. Secondly, an ICP 
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algorithm was applied in the image space to fulfill the 
further alignment. Finally by sampling the original input 3D 
range image using the translation and rotation matrix 
obtained in ICP alignment, we get the 3D ear region, which 
actually locates in a common standard coordinate system 
defined by the ear contour template. 

By using the template-based contour alignment, the 
final extracted 3D ear region is robust to ear pose change 
and there is little difference for the ears extracted from the 
same person. Fig. 1 summarizes the proposed ear detection 
method. 

 
2.2. Ear feature extraction 
In order to adopt the sparse representation framework, we 
need to map the extracted 3D ear region into a feature vector. 
The widely used features on 3D shape are point curvature, 
graphic distance, triangle area and so on [17]. But the 
difficulty is to build a one-to-one correspondence between 
these 3D-shapes. In our case, however, since we have 
aligned and scaled all 3D-ear data to a standard template in 
the ear detection step, the one-to-one correspondences have 
already been built automatically and the feature extraction 
could be directly applied to range images.  

Instead of using traditional features like curvatures, we 
adopted a local PCA-based feature introduced by Islam et al. 
in [20]. The extracted 3D-ear could be represented as a point 
cloud: E = [xi, yi, zi]

T, where i = 1,…,n. For each point in E,  
let Li = [xj, yj, zj]

T, where j = 1,…,ni be the points set in a 
region cropped by a sphere of radius r centered at this point 
pi = [xi, yi, zi]

T. Given Li, we can calculate the mean vector 
mi and covariance matrix Ci.  
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Lij represents the j-th point of Li. Then a PCA is performed 
on the covariance matrix Ci and the result yields a matrix Vi 
of eigenvectors and a diagonal matrix Di of eigenvalues of 
Ci 

i i i i
C V DV                  (3) 

Let L' 
ix and L' 

iy be the projections of points Li on its first and 
second principal components, respectively (these two 
principal components correspond to the first two largest 
eigenvalues). The feature value at point pi could be defined 
as 

       max min max min
i ix ix iy iy

L L L L    ' ' ' '  (4) 

According to [20], δi can actually represent the 
difference of first two principal axes at a local region around 
pi and it will be zero if the point cloud Li is planar or 
spherical. By calculating {δi} for all the points {pi}, we can 
obtain a feature map.  
 

    
(a) Feature image of ears from person a 

    
(b) Feature image of ears from person b 

Fig. 2: Feature maps calculated for some samples taken from 
UND-J ear database, with radius r = 5 mm. 
 

Fig. 2 shows two examples of our calculated features. 
From it we can find that the feature mainly describes the ear 
anatomical information and there is a large similarity for 
feature images from the same ear. To reduce the feature 
dimension, we adopt the random projection introduced by 
Wright et al. in [16]. 

 
2.3. Ear identification 
Given an ear gallery, we calculate a feature vector v for each 
ear in the gallery and form them to a dictionary matrix 
A=[v11,…, v1k, v21,…, v2k, vn1,…, vnk] IRm×n, where m here 
represents the feature dimension, n represents the number of 
subjects and k represents the number of samples for each 
subject in gallery. 

Given a query sample y, the recognition problem can 
be viewed as solving the over-completed linear equation: 

 
1 1

ˆ arg minx x   subject to  y Ax  (5) 

With the obtained 
1̂x , we calculate the residual of each 

subject i by 

11 2

ˆ
k

i ij ijj
r y x v


             (6) 

We choose the index with the minimum residual ri as the 
identity of the query sample y. 

To better handle the noise and corruption problem, we 
use an extensional sparse representation by substituting B = 
[A, I] for the original A where I is identity matrix IRm×m. 
So the final sparse representation algorithm we adopt is 

1 1
ˆ arg minw w   subject to y Bw  (7) 

And we extract 
1̂x  by decomposing of 1ŵ : 1ŵ =[ 1x̂ , e] and 

the residual calculation should also be substituted with 

11 2

ˆ
k

i ij ijj
r y e x v


           (8) 

We can easily recognize any given query by solving the 
above l1-minimization problem in one matching step. The 
algorithm of l1-minimization solver we used is DALM [21] 
which is the fastest algorithm for l1-minimization problem. 
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3. EXPERIMENTAL RESULTS 
 
In this section, we will present the evaluation results of the 
proposed method. The database we used in our experiment 
is UND collection J dataset [22]. The UND-J dataset is 
currently the largest 3D ear dataset which consists of 2436 
side face 3D scan from 415 different persons. Several 
samples are shown in Fig. 3.  
 

  
Fig. 3: Samples of 3D side face range data in UND-J Database. 

 
3.1. Evaluation of the ear detection performance 
To validate our ear detection algorithm, we manually 
marked ear pits for the whole UND-J dataset. In our 
experiment, we run the experiment on all the 2436 ears of 
UND-J. For each 3D ear, we compared the automatic 
detected ear pit location (Xauto_earpit, Yauto_earpit) with the 
ground-truth ear pit location (Xgt_earpit, Ygt_earpit) and if the 
Euclidean distance of two positions were larger than 16 
pixels, we regarded the ear detection for this ear as failure.  
 Under these experimental settings, our algorithm could 
achieve a 90.87% detection rate which is much higher than 
85% reported in [9] on the same dataset.  
 
3.2. Evaluation of the ear identification performance 
Although there are 415 subjects in UND-J database, most 
subjects have only 2 samples. Since the recognition based 
on sparse representation needs sufficient samples for each 
subject [16], we cannot run our experiment on the whole 
database.  

In our experiment, we selected three subsets from 
UND-J database. The first subset contained 185 subjects of 
UND-J, each of which had more than 5 samples and the 
second subset contained 125 subjects, each of which had 
more than 7 samples and the third subset contained 85 
subjects, each of which had more than 10 samples. In 
subset1, we randomly selected 5 samples from each subject 
to form the gallery and the rest of ears were formed to the 
test set. So the gallery size for subset1 was 925, and the test 
set size was 885. The principle of sample selection for 
subset2 and subset3 were the same. So the gallery size and 
the test set size of subset2 were 1209 and 588. For subset3, 
they were 850 and 291.  

We applied our ear recognition algorithm on those three 
different subsets respectively and we also evaluated the 
performance of ICP with the same condition. Since there 
were multiple samples for each subject, we used ICP to 
match a query ear with all the samples for each subject and 
selected the minimum matching error to represent the 
matching error for this subject. Finally we selected the index 
with the minimum matching error as the identity for this 

query ear. Table 1 lists the rank-1 recognition rates achieved 
by using our algorithm and ICP, where M stands for the 
number of samples for each subject. Table 2 lists the time 
cost consumed by one identification operation, where N 
stands for the gallery size. 

 
Table 1: Rank-1 recognition rate 

 M = 5 M = 7 M = 10 
ICP 83.83% 89.64% 94.09% 

Our Algorithm 87.79% 91.53% 95.23% 

 
Table 2: Time cost for 1 identification operation (seconds) 

 N = 850 N = 925 N = 1016 
ICP 127.45 144.31 152.45 

Our Algorithm 0.041 0.047 0.05 

 
3.3. Discussions 
From experimental results shown in Table 1, it can be seen 
that our proposed method performs better than ICP in terms 
of rank-1 recognition rate.  

The greatest advantage of our algorithm over ICP is that 
it has a low time cost. Table 2 compares the computational 
time cost for one ear query process. To recognize the 
identity for one query ear, the ICP based algorithm has to 
compare the query ear to all the gallery ears and each 
comparison is an ICP alignment for two ear shapes. Without 
a previous rejection process, the whole recognition process 
will cost a lot of time. Different from ICP, the recognition 
process based on sparse representation just solves an 
l1-minimization problem based on pre-calculated features, 
so it is much faster than ICP based approaches. With gallery 
size rising, the computational time of ICP approach will 
hugely rise. However, the computational time of sparse 
representation based on DALM algorithm changes little 
with the enlargement of the gallery size, which can also be 
reflected from the results listed in Table 2. 

 
4. CONCLUSION 

 
In this paper, we proposed a novel 3D ear recognition 
approach. In order to make use of the sparse representation 
framework for identification, we proposed a new 
template-based ear detection method. By using this method, 
extracted ear regions are in a common standard coordinate 
system defined by the ear contour template, which highly 
facilitates the following feature extraction and recognition 
steps. Experimental results indicate that the proposed 
method could achieve high ear detection rate, high 
identification accuracy and low computational cost. 
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