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ABSTRACT 
 
Automatic image quality assessment (IQA) attempts to use 
computational models to measure the image quality in 
consistency with subjective ratings. In the past decades, 
dozens of IQA models have been proposed. Though some 
of them can predict subjective image quality accurately, 
their computational costs are usually very high. To meet 
real-time requirements, in this paper, we propose a novel 
fast and effective IQA index, namely spectral residual 
based similarity (SR-SIM), based on a specific visual 
saliency model, spectral residual visual saliency. SR-SIM is 
designed based on the hypothesis that an image’s visual 
saliency map is closely related to its perceived quality. 
Extensive experiments conducted on three large-scale IQA 
datasets indicate that SR-SIM could achieve better 
prediction performance than the other state-of-the-art IQA 
indices evaluated. Moreover, SR-SIM can have a quite low 
computational complexity. The Matlab source code of SR-
SIM and the evaluation results are available online at 
http://sse.tongji.edu.cn/linzhang/IQA/SR-SIM/SR-SIM.htm. 

Index Terms— IQA, visual saliency, spectral residual
 

1. INTRODUCTION 

Propelled by numerous potential applications, quantitative 
evaluation of image perceptual quality has become one of 
the most fundamental yet challenging problems in image 
processing and vision research. According to the availability 
of a reference image, objective IQA indices fall into three 
categories: full reference (FR) methods, no-reference (NR) 
methods, and reduced-reference (RR) methods. In this paper, 
the discussion is confined to FR methods. 

Since the conventional pixel-based IQA indices, such 
as the peak signal-to-noise ratio (PSNR), do not correlate 
well with human beings’ subjective fidelity ratings, in the 
past decade, several sophisticated IQA indices have been 
proposed. Representative ones include the noise quality 
measure (NQM) index [1], the universal quality index (UQI) 
[2], the structural similarity (SSIM) index [3], the multi-
scale SSIM (MS-SSIM) index [4], the information fidelity 
criterion (IFC) index [5], the visual information fidelity 

(VIF) index [6], the Riesz transforms based feature 
similarity (RFSIM) index [7], the information content 
weighted SSIM (IW-SSIM) index [8], and the feature 
similarity (FSIM) index [9].  

An IQA index is usually used in optimizing visual 
processing algorithms or systems. Thus, a perfect IQA 
index should perform well in two aspects. At first, objective 
quality scores predicted by an IQA index need to highly 
correlate with subjective evaluations. Secondly, to be 
suitable for real-time applications, an IQA index should 
have a low computational cost. Through our investigation, 
we find that the computational cost is often ignored in 
designing IQA indices. Therefore, though several recently 
proposed IQA indices, such as IW-SSIM [8] and FSIM [9], 
could achieve outstanding prediction performances, their 
computational costs are very high, which limits their 
applications in practice.  

Based on these considerations, in this paper, we 
propose a novel IQA index having a high prediction 
performance and a low computational cost simultaneously, 
namely spectral residual based similarity (SR-SIM). SR-
SIM is based on an effective and efficient visual saliency 
model, spectral residual visual saliency (SRVS) [10]. In 
SR-SIM, SRVS map acts as two roles, a feature map 
characterizing the image’s local quality, and a weighting 
function indicating the importance of a local region to the 
human visual system (HVS) when pooling the final quality 
score. The performance of SR-SIM is examined on three 
large-scale IQA image datasets and is compared with other 
nine state-of-the-art IQA indices. Efficacy and efficiency of 
SR-SIM are corroborated by the experimental results. 

The rest of this paper is organized as follows. Section 2 
states the relationship between visual saliency and the 
perceived quality. Section 3 presents our proposed SR-SIM 
IQA index. Section 4 gives the experimental results and 
related discussions. Finally, Section 5 concludes the paper. 

2. VISUAL SALIENCY AND PERCEIVED QUALITY 

Building effective computational models to simulate human 
visual attention has been studied by scholars for a long time. 
Most of the existing visual attention models are bottom-up 
visual saliency (VS) models since bottom-up attention 
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mechanisms is more thoroughly studied than top-down 
mechanisms [11]. In the literature, dozens of various VS 
models have been proposed and several of them could 
predict the human visual attention accurately [11]. 

Recently, researchers have gradually found that VS is 
closely relevant to the image’s perceptual quality. Various 
methods have been attempted to integrate VS information 
into IQA metrics [12]. These methods share some common 
characteristics. First, a VS map is only exploited as a 
weighting function to reflect the different importance of 
different regions in the local quality map. Second, for these 
methods, the motivation is actually not to design a new IQA 
index but to demonstrate that a VS-weighted pooling 
strategy could perform better than the simple “mean” 
scheme. Thus, for computing the local quality map, they all 
adopt some existing methods, such as PSNR, SSIM, and 
VIF, without discussing whether there could be more 
effective methods to characterize the local image quality. 

3. SPECTRAL RESIDUAL BASED SIMILARITY 

Here we propose a novel VS-based IQA index. With respect 
to the visual saliency model, we adopt the spectral residual 
visual saliency (SRVS) [10], which has been proved to be 
efficient and effective. Thus, the proposed IQA index is 
named as spectral residual based similarity (SR-SIM).  

3.1. Spectral residual visual saliency 

Spectral residual visual saliency (SRVS) model was 
proposed in [10]. In SRVS, the spectral residual is obtained 
at first from the log spectrum of the examined image. And 
then, the VS map is obtained by transforming the spectral 
residual to the spatial domain. Spectral residual actually 
approximately represents the innovation part of an image by 
removing the statistical redundant components. 

Suppose f is the examined image. According to [10], 
SRVS can be computed as the following, 

( , ) { ( , )}( , )M u v abs f x y u v (1)
( , ) { ( , )}( , )A u v angle f x y u v (2)

( , ) log ( , )L u v M u v (3)
( , ) ( , ) ( , ) * ( , )nR u v L u v h u v L u v (4)

21( , ) ( , ) * exp ( , )SRVS x y g x y R jA x y (5)

In the above equations,  ( -1) denotes the Fourier (inverse 
Fourier) transform, abs(·) returns the magnitude of a 
complex number, angle(·) returns the argument of a 
complex number, hn(u, v) is an n n mean filter, g(x, y) is a 
Gaussian function, and * represents the convolution. 

3.2. SR-SIM: Spectral residual based similarity 

Zhang et al. have shown that perceptible image quality 
degradation can lead to perceptible changes in image’s low-
level features [9]. Since bottom-up VS models are basically 
based on image’s low level features, VS values themselves 
actually vary with the change of the image quality. 
Therefore, in our SR-SIM, we propose to use SRVS map as 
a feature to compute the local similarity map between the 
reference image and the distorted image. 

However, SRVS value at a pixel actually is a measure 
reflecting its relative distinctiveness to its surroundings. 
Thus, it is weak to characterize image’s absolute local 
contrast. Hence, we need to use an additional feature to 
compensate for the lack of contrast sensitivity of SRVS. 
The simplest feature of this kind may be the gradient 
modulus (GM). There are many operators to compute image 
gradient, and here we adopt the Scharr gradient operator, 
which has been proved very powerful in [9]. With Scharr 
gradient operator, partial derivatives Gx(x) and Gy(x) of an 
image f(x) are calculated as 

1( ) 0 * ( )
16
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xG fx x

1( ) 0 0 0 * ( )
16

3 10 3
yG fx x

(6)

The GM of f(x) is then defined as 2 2( ) ( ) ( )x yG G Gx x x .
VS and GM are complementary and they reflect different 
aspects of the HVS in assessing the local quality of the input 
image. 

Suppose that we are going to calculate the similarity 
between images f1 and f2. Denote by R1 and R2 the SRVS 
maps extracted from images f1 and f2 using the SRVS model, 
and by G1 and G2 the GM maps extracted from f1 and f2.
Similar to other IQA indices, the computation of SR-SIM 
consists of two stages. In the first stage, the local similarity 
map is computed, and in the second stage, we pool the 
similarity map into a single quality score. 

We separate the SR-SIM measurement between f1(x)
and f2(x) into two components, each for SRVS and GM. 
First, the similarity between R1(x) and R2(x) is defined as: 

1 2 1
2 2

1 2 1

2 ( ) ( )( )
( ) ( )V

R R C
S

R R C
x xx

x x (7)

where C1 is a positive constant to increase the stability of SV.
Similarly, the GM values G1(x) and G2(x) are compared as: 

1 2 2
2 2

1 2 2

2 ( ) ( )( )
( ) ( )G

G G C
S

G G C
x xx

x x (8)

where C2 is another positive constant. Then, SV(x) and SG(x)
are combined to get the local similarity S(x) of f1(x) and 
f2(x). We define S(x) as follows: 

( ) ( ) [ ( )]V GS S Sx x x (9)
where  is a constant used to adjust the relative importance 
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of VS and GM features. 
Having obtained the local similarity S(x) at each 

location x, the overall similarity between f1 and f2 can be 
calculated. It has been widely accepted that a good quality 
score pooling strategy should correlate well with human 
visual fixation. In our case, it is natural to use SRVS map to 
characterize the visual importance of a local region. 
Intuitively, for a given position x, if anyone of f1(x) and f2(x)
has a high SRVS value, it implies that this position x will 
have a high impact on HVS when evaluating the similarity 
between f1 and f2. Therefore, we use Rm(x) = max(R1(x),
R2(x)) to weight the importance of S(x) in the overall 
similarity. Thus, the SR-SIM between f1 and f2 is defined as: 

( ) ( )
SR-SIM

( )
m

m

S R

R
x

x

x x
x (10)

where  means the whole image spatial domain. Fig. 1 
illustrates the scheme for computing SR-SIM. 
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R
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x

Rm

Fig. 1: Illustration for the computing scheme of SR-SIM. f1 is the 
reference image and f2 is a distorted version of f1.

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

4.1. Test protocol 
Experiments were conducted on three large-scale image 
datasets constructed for evaluating IQA indices, including 
TID2008 [13], CSIQ [14] and LIVE [15]. The important 
information of these three datasets, in terms of the number 
of reference images, the number of distorted images, the 
number of quality distortion types, and the number of 
subjects, is summarized in Table 1. 

Four metrics are employed to evaluate IQA indices, 
including Spearman rank-order correlation coefficient 
(SROCC), Kendall rank-order correlation coefficient 
(KROCC), Pearson linear correlation coefficient (PLCC), 

and Root Mean Squared Error (RMSE). Definitions, 
explanations, and ways for calculating these four 
performance metrics can be found in [8]. 

The performance of the proposed SR-SIM IQA index 
was evaluated and compared with the other 9 state-of-the-
art or representative IQA indices, including NQM [1], UQI 
[2], SSIM [3], MS-SSIM [4], IFC [5], VIF [6], IW-SSIM 
[8], RFSIM [7], and FSIM [9]. 

Table 1: Benchmark image datasets for IQA 

Dataset Reference 
Images No.

Distorted 
Images No. 

Distortion
Types No.

Subjects 
No. 

TID2008 25 1700 17 838
CSIQ 30 866 6 35 
LIVE 29 779 5 161 

4.2. Performance evaluation 
The prediction performance of each IQA index is given in 
Table 2. For each performance measure, the three IQA 
indices producing the best results are highlighted in 
boldface. In addition, in order to provide an evaluation of 
the overall performance of the evaluated IQA indices, in 
Table 3 we present their weighted-average SROCC, 
KROCC and PLCC results over three datasets and the 
weight assigned to each dataset linearly depends on the 
number of distorted images contained in that dataset. 

The running speed of each selected IQA index was also 
evaluated. Experiments were performed on a Lenovo 
ThinkCenter M6300t PC. The software platform was 
Matlab R2010b. The time cost consumed by each IQA 
index for measuring the similarity of a pair of 384×512 
color images (taken from TID2008) is listed in Table 4. 

4.3. Discussions 
From Table 2, it can be seen that with respect to the 
prediction performance, SR-SIM performs better than all the 
other IQA indices evaluated on the two largest IQA datasets, 
TID2008 and CSIQ. Even on LIVE, it performs only a 
slightly worse than VIF and FSIM. In Table 3, the statistical 
superiority of SR-SIM to the other competing IQA indices 
is clearly exhibited since no matter which performance 
criterion is used, SR-SIM always achieves the best overall 
results. 

From Table 4 it can be seen that with respect to the 
running speed, SR-SIM ranks second and it performs only a 
little slower than SSIM. However, it should be noted that 
SR-SIM could achieve greatly better prediction performance 
than SSIM. FSIM, RFSIM, and IW-SSIM, indices that 
could achieve comparable prediction performances with SR-
SIM, all have much higher computational complexities than 
SR-SIM. 

Thus, we conclude that the proposed SR-SIM could 
achieve the best overall prediction performance while it has 
a quite low computational complexity, similar as SSIM. 
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Table 3: Overall performance of IQA indices over 3 datasets 
IQA Index SROCC KROCC PLCC 

NQM 0.7205 0.5528 0.7170 
UQI 0.7152 0.5418 0.7621 

SSIM 0.8413 0.6574 0.8360 
MS-SSIM 0.8921 0.7126 0.8833 

IFC 0.7026 0.5445 0.8059 
VIF 0.8432 0.6858 0.8747 

IW-SSIM 0.8963 0.7226 0.8945 
RFSIM 0.9007 0.7245 0.8948 
FSIM 0.9111 0.7431 0.9037 

SR-SIM 0.9182 0.7566 0.9125 

Table 4: Time cost of each IQA index 
IQA Index Time (milliseconds) 

NQM 227.4 
UQI 48.4 

SSIM 25.1 
MS-SSIM 78.9 

IFC 685.4 
VIF 705.2 

IW-SSIM 386.3 
RFSIM 85.7 
FSIM 350.6 

SR-SIM 29.1 

5. CONCLUSION 
In this paper, we proposed a novel efficient and effective 
IQA index, SR-SIM, based on a specific visual saliency 
model, spectral residual visual saliency. SR-SIM is designed 
based on the assumption that an image’s visual saliency 
map has a close relationship with its perceptual quality. 
Experimental results indicate that SR-SIM could yield 
statistically better prediction performance than all the other 
competing methods evaluated. Moreover, SR-SIM has a 
very low computational complexity, similar as SSIM. Thus, 
SR-SIM can be the best candidate of IQA indices for real-
time applications. 
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