Assignment 1

1.

To prove that M_{i} is a group, we need to demonstrate that M_{i} satisfies the four group properties: closure, associativity, identity element, and the existence of inverse elements.

(1) Closure:

By definition, we need to show that $\forall M_{a}, M_{b} \in\left\{M_{i}\right\}, M_{a} \times M_{b}=M_{c} \in\left\{M_{i}\right\}$,

$$
\because M_{a} \times M_{b}=\left[\begin{array}{cc}
R_{a} & t_{a} \tag{1}\\
0^{T} & 1
\end{array}\right] \times\left[\begin{array}{cc}
R_{b} & t_{b} \\
0^{T} & 1
\end{array}\right]=\left[\begin{array}{cc}
R_{a} \times R_{b} & R_{a} \times t_{b}+t_{a} \\
0^{T} & 1
\end{array}\right]
$$

$\because R_{i} \in \mathbb{R}^{3 \times 3}$, and R_{i} is an orthogonal matrix, $R_{i} \times R_{i}^{T}=E$,
$\therefore R_{a} \times R_{a}^{T}=E, R_{b} \times R_{b}^{T}=E$
$\therefore\left(R_{a} \cdot R_{b}\right) \times\left(R_{a} \cdot R_{b}\right)^{T}$
$=\left(R_{a} \cdot R_{b}\right) \times\left(R_{b}^{T} \cdot R_{a}^{T}\right)$
$=R_{a} \cdot\left(R_{b} \times R_{b}^{T}\right) \cdot R_{a}^{T}$
$=R_{a} \cdot R_{a}^{T}$
$=E$,
$\therefore R_{a} \cdot R_{b} \in R_{i}$ is also an orthogonal matrix.
$\because t_{i} \in \mathbb{R}^{3 \times 1}$,
$\therefore R_{a} \times t_{b}+t_{a} \in \mathbb{R}^{3 \times 1}$,
$\therefore R_{a} \times t_{b}+t_{a} \in t_{i}$
$\therefore M_{a} \times M_{b} \in M_{i}$, and closure is established.

(2) Associativity:

By definition, we need to show that $\forall M_{a}, M_{b}, M_{c} \in\left\{M_{i}\right\},\left(M_{a} \times M_{b}\right) \times M_{c}=M_{a} \times\left(M_{b} \times\right.$ M_{c}),

$$
\because\left(M_{a} \times M_{b}\right) \times M_{c}=\left[\begin{array}{cc}
R_{a} \times R_{b} & R_{a} \times t_{b}+t_{a} \\
0^{T} & 1
\end{array}\right] \times\left[\begin{array}{cc}
R_{c} & t_{c} \\
0^{T} & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
R_{a} \times R_{b} \times R_{c} & \left(R_{a} \times R_{b}\right) \cdot t_{c}+R_{a} \times t_{b}+t_{a} \tag{2}\\
0^{T} & 1
\end{array}\right]
$$

On the other hand,

$$
\begin{align*}
\because M_{a} & \times\left(M_{b} \times M_{c}\right)=\left[\begin{array}{cc}
R_{a} & t_{a} \\
0^{T} & 1
\end{array}\right] \times\left[\begin{array}{cc}
R_{b} \times R_{c} & R_{b} \times t_{c}+t_{b} \\
0^{T} & 1
\end{array}\right] \\
& =\left[\begin{array}{cc}
R_{a} \times R_{b} \times R_{c} & R_{a} \times\left(R_{b} \times t_{c}+t_{b}\right)+t_{a} \\
0^{T} & 1
\end{array}\right] \tag{3}\\
& =\left[\begin{array}{cc}
R_{a} \times R_{b} \times R_{c} & R_{a} \times R_{b} \cdot t_{c}+R_{a} \times t_{b}+t_{a} \\
0^{T} & 1
\end{array}\right]
\end{align*}
$$

It is clear that $(2)=(3)$, demonstrating associativity.

(3) Identity Element:

By definition, we need to show that $\exists M_{e} \in\left\{M_{i}\right\}, \forall M_{a} \in\left\{M_{i}\right\}, M_{e} \times M_{a}=M_{a} \times M_{e}=M_{a}$. It is evident that $M_{e}=\left[\begin{array}{cc}E & 0 \\ 0^{T} & 1\end{array}\right]$.
$\because M_{a} \times M_{e}=\left[\begin{array}{cc}R_{a} & t_{a} \\ 0^{T} & 1\end{array}\right] \times\left[\begin{array}{cc}E & 0 \\ 0^{T} & 1\end{array}\right]$
$=\left[\begin{array}{cc}R_{a} \times E & R_{a} \times 0+t_{a} \\ 0^{T} & 1\end{array}\right]$
$=\left[\begin{array}{cc}R_{a} & t_{a} \\ 0^{T} & 1\end{array}\right]=M_{a} ;$
$M_{e} \times M_{a}=\left[\begin{array}{cc}E & 0 \\ 0^{T} & 1\end{array}\right] \times\left[\begin{array}{cc}R_{a} & t_{a} \\ 0^{T} & 1\end{array}\right]$
$=\left[\begin{array}{cc}E \times R_{a} & E \times t_{a}+0 \\ 0^{T} & 1\end{array}\right]$
$=\left[\begin{array}{cc}R_{a} & t_{a} \\ 0^{T} & 1\end{array}\right]=M_{a}$,
\therefore There exists an identity element M_{e}.

(4) Existence of Inverse Elements:

By definition, we need to show that $\exists M_{e} \in\left\{M_{i}\right\}, \forall M_{a} \in\left\{M_{i}\right\}, \exists M_{a}^{-1} \in\left\{M_{i}\right\}, M_{a}^{-1} \times M_{a}=$ $M_{a} \times M_{a}^{-1}=M_{e}$,

First, we calculate M_{a}^{-1} :
We assume $M_{a} \times M_{b}=M_{e}$, and from (3), we know that $M_{e}=\left[\begin{array}{cc}E & 0 \\ 0^{T} & 1\end{array}\right]$,

Comparing the elements, we get:

$$
\left\{\begin{array}{l}
R_{a} \times R_{b}=E \\
R_{a} \cdot t_{b}+t_{a}=0
\end{array}\right.
$$

Solving for R_{b} and t_{b}, we get:

$$
\left\{\begin{array}{l}
R_{b}=R_{a}^{-1} \\
t_{b}=-R_{a}^{-1} \cdot t_{a}
\end{array}\right.
$$

Now, substituting these values back, we can see that $M_{b} \times M_{a}=\left[\begin{array}{cc}R_{b} \times R_{a} & R_{b} \times t_{a}+t_{b} \\ 0^{T} & 1\end{array}\right]=$ $\left[\begin{array}{cc}E & 0 \\ 0^{T} & 1\end{array}\right]=M_{e}$ is also satisfied.
$\because R_{a} \in R_{i}$, and it is an orthogonal matrix, and $t_{a} \in \mathbb{R}^{3 \times 1}$
$\therefore R_{b}=R_{a}^{-1}=R_{a}^{T}$ exists, $t_{b}=-R_{a}^{-1} \cdot t_{a}$ also exists.Thus, $M_{a}^{-1}=\left[\begin{array}{cc}R_{a}^{-1} & -R_{a}^{-1} \cdot t_{a} \\ 0^{T} & 1\end{array}\right]$, the existence of inverse elements for each group element is proven.

In conclusion, M_{i} is a group.

2.

a. Prove that the matrix M is positive semidefinite:

By definition, we need to prove that $\forall x \in \mathbb{R}^{n \times 1}, x^{T} \cdot M \cdot x \geq 0$, where x is a non-zero column vector.

It is known that M is a real symmetric matrix. Let $x=\left[\begin{array}{l}u \\ v\end{array}\right]$,
$\therefore x^{T} \cdot M \cdot x$
$=\sum_{\left(x_{i}, y_{i}\right) \in w}\left[\begin{array}{ll}u & v\end{array}\right] \cdot\left[\begin{array}{cc}I_{x}^{2} & I_{x} \cdot I_{y} \\ I_{x} \cdot I_{y} & I_{y}^{2}\end{array}\right]\left[\begin{array}{l}u \\ v\end{array}\right]$
$=\sum_{\left(x_{i}, y_{i}\right) \in w}\left(u^{2} I_{x}^{2}+2 u v I_{x} I_{y}+v^{2} I_{y}^{2}\right)$
$=\sum_{\left(x_{i}, y_{i}\right) \in w}\left(u I_{x}+v I_{y}\right)^{2}$
$\because\left(u I_{x}+v I_{y}\right)^{2} \geq 0$
$\therefore x^{T} \cdot M \cdot x \geq 0$,
$\therefore M$ is positive semi-definite.
b. Prove that when M is positive definite, the expression $\left[\begin{array}{ll}x & y\end{array}\right] \cdot M \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ represents an ellipse:

Assuming the final result is $M=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$, and since M is positive definite, we have $a>0$ and $c>$ 0 , as well as $a c-b^{2}>0$.
$\therefore\left[\begin{array}{ll}x & y\end{array}\right] \cdot M \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=a x^{2}+2 b x y+c y^{2}$
$\therefore 4 a c-(2 b)^{2}>0$
The general equation of an ellipse is $A x^{2}+B x y+C y^{2}+D x+E y+F=0$,
By the definition of an ellipse equation, when $4 A C-B^{2}>0$ and $A>0, C>0$, it represents an ellipse;
$\therefore\left[\begin{array}{ll}x & y\end{array}\right] \cdot M \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ represents an ellipse.

c. Find the lengths of the major and minor axes of the ellipse:

From the given information, we know that M is positive definite, and its eigenvalues are λ_{1} and λ_{2}, where $\lambda_{1}>\lambda_{2}>0$.

It is known that the standard equation of an ellipse is $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, where a and b are the lengths of the major and minor axes, respectively.

Next, we diagonalize M into $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}\right)$ using the orthogonal matrix P :
$P^{T} M P=D$
We can express $\left[\begin{array}{l}x \\ y\end{array}\right]$ as a linear combination with respect to P :
$\left[\begin{array}{l}x \\ y\end{array}\right]=P \times\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]$
$\therefore\left[\begin{array}{ll}x & y\end{array}\right] \cdot M \cdot\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right] \cdot\left(P^{T} M P\right) \cdot\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{ll}x^{\prime} & y^{\prime}\end{array}\right] \cdot D \cdot\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\lambda_{1} x^{\prime 2}+\lambda_{2} y^{\prime 2}$

Now, the quadratic form matches the standard equation of an ellipse,
$\therefore a=\frac{1}{\sqrt{\lambda_{1}}}, b=\frac{1}{\sqrt{\lambda_{2}}}$.

3.

It is evident that $A^{T} A$ is an $n \times n$ square matrix, and it is symmetric.
When $R(A)=n$, for $\forall y \in \mathbb{R}^{n \times 1}$ with $y \neq 0$, we have $A y \neq 0$,
$\therefore y^{T}\left(A^{T} A\right) y=(A y, A y)=\|A y\|_{2}^{2}>0$
By the definition of a positive definite matrix, we have $A^{T} A$ as a positive definite matrix.
From the properties of positive definite matrices, we know that $\operatorname{det}\left(A^{T} A\right)>0$.
$\therefore A^{T} A$ is invertible.

