
Assignment 1

1.
To prove that  is a group, we need to demonstrate that  satisfies the four group properties:
closure, associativity, identity element, and the existence of inverse elements.

(1) Closure:

By definition, we need to show that 

 and  is an orthogonal matrix, 

 is also an orthogonal matrix.

 , and closure is established.

(2) Associativity:

By definition, we need to show that 
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On the other hand,

It is clear that  , demonstrating associativity.

(3) Identity Element:

By definition, we need to show that 

It is evident that .

 There exists an identity element .

(4) Existence of Inverse Elements:

By definition, we need to show that 

First, we calculate :

We assume  and from (3), we know that ,
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Comparing the elements, we get:

Solving for  and , we get:

Now, substituting these values back, we can see that 

 is also satisfied.

 and it is an orthogonal matrix, and 

 exists,  also exists.Thus, , the

existence of inverse elements for each group element is proven.

In conclusion,  is a group.

2.
a. Prove that the matrix  is positive semidefinite:

By definition, we need to prove that , , where  is a non-zero column
vector.

It is known that  is a real symmetric matrix. Let ,
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 is positive semi-definite.

b. Prove that when  is positive definite, the expression  represents an

ellipse:

Assuming the final result is , and since  is positive definite, we have  and 

, as well as .

The general equation of an ellipse is ，

By the definition of an ellipse equation, when  and  , it represents an
ellipse;

 represents an ellipse.

c. Find the lengths of the major and minor axes of the ellipse:

From the given information, we know that  is positive definite, and its eigenvalues are  and ,
where .

It is known that the standard equation of an ellipse is , where  and  are the lengths of
the major and minor axes, respectively.

Next, we diagonalize  into  using the orthogonal matrix :
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Now, the quadratic form matches the standard equation of an ellipse,
， 。

3.
It is evident that  is an  square matrix, and it is symmetric.

When , for  with , we have ,

By the definition of a positive definite matrix, we have  as a positive definite matrix.

From the properties of positive definite matrices, we know that .
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